5. Аэрогазодинамика и тепломассообмен перспективных летательных аппаратов и двигателей

Программа 5.1. Управление до-, сверх- и гиперзвуковыми внешними и внутренними течениями путем силового и энергетического воздействия

Рис. 1. Положение скачка уплотнения на клине: a — эксперимент, δ — расчет. **Fig. 1.** Position of a shock wave at wedge: a — the experiment, δ — the calculation.

В Институте теоретической и прикладной механики впервые экспериментально показана принципиальная возможность управления гиперзвуковым потоком воздуха с помощью МГД-воздействия, когда ионизация потока осуществляется электронным пучком. МГДуправление определялось по положению косой ударной волны на клине (рис. 1, a). Обтекание клина осуществлялось при числе Maxa M = 8, статическом давлении потока 1 Торр, а измеренное значение индукции магнитного поля было 2,5 Тл. Для ионизации потока воздуха перед клином использовалась электронная пушка с оксидным катодом прямого накаливания. Эксперимент сопровождался расчетом с использованием 3D-программных кодов, созданных в Институте и аналитическими оценками (рис. 1, б).

В том же Институте предложен новый способ регистрации интерферограмм фазовых объектов с формированием опорной волны от отдельного источника света. Дано теоретическое обоснование метода. Разработана схема реализации метода и получены интерферограммы, доказывающие его работоспособность (рис. 2). Показано, что применение современных чувствительных устройств регистрации изображений позволяет: использовать в методах оптической интерферометрии отдельные источники света для формирования опорной волны; увеличить возможные размеры анализируемых фазовых объектов; упростить процесс получения интерферограмм на установках, оснащенных обычными теневыми приборами, и расширить применение методов оптической интерферометрии в аэрофизическом эксперименте.

Простота реализации предлагаемой схемы дает возможность использовать методы оптической интерферометрии практически на любой установке, оснащенной обычным теневым прибором.

Рис. 2. Пример интерферограммы пламени спиртовки, зарегистрированной предлагаемым способом.

Fig. 2. An example of a typical interferogram of a spirit-lamp flame obtained from the offered method.

Программа 5.2. Аэротермодинамика гиперзвукового полета перспективных летательных аппаратов

В Институте теоретической и прикладной механики впервые показана эффективность применения ультразвукпоглощающих покрытий с хаотической пористой микроструктурой для управления ламинарно-турбулентным переходом при гиперзвуковых скоростях. Пористое покрытие представляет собой металличе-

Рис. 3. Зависимость положения ламинарно-турбулентного перехода гиперзвукового пограничного слоя при M = 12 от единичного числа Рейнольдса для пористой и сплошной поверхностей.

Fig. 3. Dependence of laminar-turbulent transition location of a hypersonic boundary layer at M = 12 on Unit Reynolds Number for porous and solid surfaces.

Рис. 4. Изменение высоты ножки Маха в процессе взаимодействия возмущения, индуцированного лазерным импульсом, с маховской ударно-волновой конфигурацией.

Fig. 4. Mach stem height variation as function of time during interaction of the laser-induced perturbation with the Mach shock wave configuration.

ский фетр, состоящий из спеченных металлических проволочек диаметром 30 мкм. Пористость покрытия составляет 75 %. Исследования ламинарно-турбулентного перехода на конусе выполнены в гиперзвуковой аэродинамической трубе адиабатического сжатия АТ-303 с числами Рейнольдса более чем 10⁷ при больших числах Маха (8—20). Показано, что ультразвукпоглощающие пористые покрытия при гиперзвуковых скоростях позволяют увеличить протяженность ламинарного участка обтекания в два раза (рис. 3).

В том же Институте проведено численное исследование влияния импульсного энергоподвода в набегающий поток на переход между регулярным и маховским отражениями сильных ударных волн. Данная задача предъявляет высокие требования к вычислительным ресурсам, поскольку для ее решения необходимо детальное моделирование нестационарного процесса взаимодействия возмущения, порожденного лазерным импульсом, с трехмерной ударно-волновой конфигурацией. При проведении нестационарных трехмерных расчетов были использованы сетки с полным числом ячеек до 120 миллионов, что стало возможным благодаря использованию параллельного суперкомпьютера (64 процессора). Показано, что внутри так называемой области двойного решения переход от регулярного к маховскому отражению может быть реализован путем возмущения потока лазерным импульсом. При численном исследовании воздействия энергоподвода на маховское отражение выяснилось, что стационарная маховская конфигурация восстанавливается после сложного процесса взаимодействия с возмущениями. В частности, вынужденный переход от маховского к регулярному отражению под действием лазерного импульса, обнаруженный в расчетах, выполненных американскими исследователями, был связан с недостаточным пространственным разрешением и не подтверждается при моделировании с более высоким разрешением. Полученная в настоящих расчетах временная зависимость высоты ножки Маха в процессе взаимодействия с возмущением находится в хорошем согласии с экспериментальными данными (рис. 4).