
Приоритетное направление 8.7. Теория и методы экономико-математического моделирования сценариев социально-экономического и инновационного развития России

Программа 8.7.1. Анализ и моделирование влияния межрегиональных экономических связей и межуровневых отношений на территориальную структуру РФ

Обобщены исследования в области моделирования пространственной экономики, проводившиеся в Институте экономики и организации промышленного производства в течение 40 лет (А. Г. Гранберг, В. И. Суслов, С. А. Суспицын. Многорегиональные системы: экономико-математическое исследование. Новосибирск: Сибирское научное издательство, 2007. 360 с.). Дана характеристика экономико-математического инструментария для исследований структуры и динамики национальной экономики, рассматриваемой в качестве системы взаимосвязанных региональных экономик. Прослежена эволюция теоретических конструкций оптимизационных межрегиональных межотраслевых моделей. Выявлены условия продуктивности многорегиональной системы и типичные свойства оптимальных решений межрегиональных моделей. Обоснованы принципиальные положения теории межрегиональных экономических взаимодействий как составной части теории общего экономического равновесия. Описана базовая модель экономического взаимодействия регионов, ее соотношения с оптимизационной межрегиональной моделью и возможности использования для измерения особых состояний и эффектов межрегиональных взаимодействий, включая параметризацию множества Парето, выявление эффективных и неэффективных коалиций регионов, нахождение ядра и равновесия многорегиональных систем (рис. 5). Обобщены исследования, посвященные развитию методологии системного моделирования применительно к многорегиональной экономике. Предложены подходы к согласованию решений в двухуровневой системе национальная экономика—регионы, базирующиеся на построении и использовании функций отклика регионов и идеях рефлекторного моделирования. Обобщен опыт моделирования экономических взаимодействий союзных республик в составе СССР, макрорегионов Российской Федерации, регионов мира.

Учеными того же Института разработаны математические основы моделирования макроэкономических процессов с использованием нечетко-множественных методов. Предложен вариант динамической межотраслевой модели с нечетко-множественными параметрами. Проанализированы ожидания экономических субъектов как один из факторов формирования неопределенности в социально-экономических системах; проведен анализ неопределенности при моделировании эколого-экономических процессов в России. Выполнены прогнозные расчеты эколого-экономического развития России с использованием комплекса динамических моделей российской экономики КАМИН (система Комплексного Анализа Межотраслевой

Рис. 5. Характеристика эффектов взаимодействия в территориальной системе из двух регионов.

 2^1 и 2^2 — значения целевого показателя при отсутствии взаимодействия между регионами, штриховкой показана область их допустимых значений. Взаимодействие регионов «раздвигает» допустимое множество в направлениях, показанных стрелками. Границу допустимого множества при взаимодействии образует кривая ABCDEF. Эффекты взаимодействия для регионов равны $z_0^1-z^1$ и $z_0^2-z^2$, где z_0^1 и z_0^2 — фактические значения целевых показателей регионов при конкретном варианте межрегиональных связей. Область взаимовыгодных контактов формируется участком CD, который называется ядром системы.

Рис. 6. Использование метода нечеткого представления данных на примере коэффициента образования загрязненных сточных вод (цены 2000 г.).

a — при удельном коэффициенте образования загрязненных сточных вод $1,62 \,\mathrm{m}^3$ на $1 \,\mathrm{тыc.}$ руб. валового выпуска значение функции правдоподобия $0,85; \,\delta$ — при удельном коэффициенте образования основных загрязняющих атмосферу веществ — $7,06 \,\mathrm{T}$ на $1 \,\mathrm{mnh}$ руб. валового выпуска значение функции правдоподобия 0,99.

ИНформации) с экологическим блоком. Методика применения интервального представления данных показывает, что для оценки объемов образования атмосферных и водных загрязнений в процессе прогнозирования с использованием модельного комплекса КАМИН более правильно принимать значения удельных коэффициентов не на уровне базового го-

да, а обладающие наибольшей степенью правдоподобия (рис. 6). Таким образом, размытое представление коэффициентов дает возможность провести анализ экологических проблем с учетом неопределенности, оценить степень правдоподобия каждого варианта и выполнить более обоснованный прогноз экологической ситуации.