Приоритетное направление V.37. Современные проблемы химии материалов, включая наноматериалы

Программа V.37.1. Совершенствование технологий синтеза и модифицирования различных классов материалов и покрытий на их основе (координатор член-корр. РАН Н. 3. Ляхов)

Институте неорганической им. А. В. Николаева разработаны подходы к получению нового углеродного материала графена химической модификацией высокорасщепленного графита и его переводом в коллоидные дисперсии с последующим их превращением в графеновые пленки (рис. 24). Полученные коллоидные растворы и графеновые пленки охарактеризованы совокупностью высокоинформативных физических методов, включая дифракционные методы, электронную и атомно-силовую микроскопию, рамановскую спектроскопию и др. Показано, что монослойные дисперсии образуют графеновые пленки с совершенной гексагональной структурой. Материалы перспективны в качестве возможной основы будущей наноэлектроники.

В Институте химии твердого тела и механохимии созданы керамические кислородпроницаемые мембраны состава $SrFe_{1-x}M_xO_{3-\delta}$ (M = Mo, W; x=0, 0,05, 0,1), для которых лимитирующей стадией кислородного транспорта являются поверхностные реакции обмена на границе газ/твердое (рис. 25). Показано, что кислородные потоки через массивные газо-

плотные мембраны не зависят от толщины мембраны, а нанесение катализатора (серебра) на проницаемую сторону приводит к увеличению потоков в два раза. Полученные мембраны, планируемые для использования в каталитических реакторах частичного окисления углеводородов для сепарации воздуха, более экономичны, чем материалы, в которых кислородные потоки контролируются диффузией, поскольку не требуют дорогостоящих тонкопленочных технологий.

Институте неорганической химии им. А. В. Николаева низкоградиентным методом Чохральского из раствора в расплаве дивольфрамата калия выращены лазерные крикалий-гадолиниевого сталлы вольфрамата, $KGd(WO_4)_2$: Eu^{3+} , активированные европием высокой концентрации (25 ат.%) (рис. 26). Впервые на переходе $^5D_0 \rightarrow {}^7F_4$ (длина волны 703 нм) получена эффективная генерация в видимой области спектра на ионах $P3M (Eu^{3+})$. В режимах свободной генерации и модулированной добротности продемонстрирована высокая эффективность преобразования энергии накачки в излучение. Полученные кри-

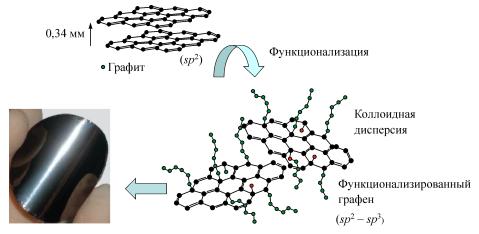
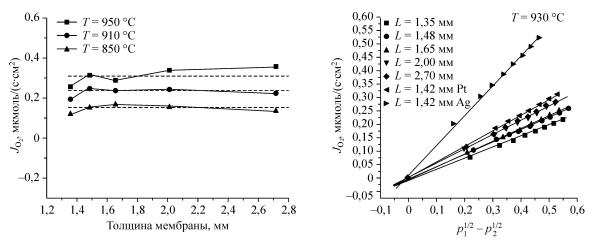
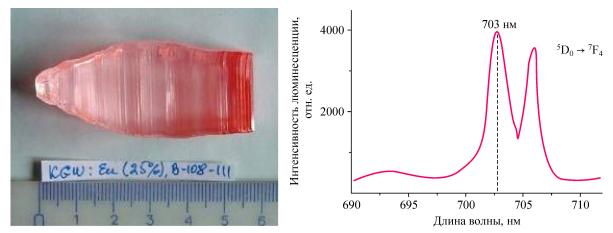




Рис. 24. Получение графена через химическую функционализацию и коллоидные дисперсии.

Рис. 25. Кислородные потоки $J_{\rm O_2}$ через массивные керамические мембраны состава ${\rm SrFe_{0.95}W_{0.05}O_{3-\delta}}$ при разных толщинах мембраны (слева). Зависимость кислородных потоков через газоплотные мембраны состава ${\rm SrFe_{0.95}W_{0.05}O_{3-\delta}}$ от парциального давления кислорода ($p_1=0.21$ атм.) (справа).

Рис. 26. Кристалл (слева) и спектр флуоресценции (справа) $KGd(WO_4)_2 : Eu^{3+}$.

сталлы представляют значительный интерес для создания лазеров для научных и приклад-

ных задач, включая физическую метрологию и медицину.

Программа V.37.2. Исследование взаимосвязи «структура — химические свойства» в функциональных наноматериалах, анализ реакционной способности и стабильности функциональных наноматериалов в условиях воздействия реакционных сред (координатор член-корр. РАН В. И. Бухтияров)

В Институте катализа им. Г. К. Борескова разработаны каталитические мембраны с нанокомпозитными слоями для выделения O_2 из воздуха и использования его для конверсии CH_4 в синтез-газ. Мембраны состоят из подложки из Ni—Al-пеносплава на иглах корунда с нанесен-

ными слоями макропористого композита LSNF—GDC ($La_{0.8}Sr_{0.2}Ni_{0.4}Fe_{0.6}O_3$ — $Ce_{0.8}Gd_{0.2}O_{2-\delta}$), слоя микропористого—мезопористого композита, плотного нанокомпозитного слоя шпинели GDC и пористого каталитического слоя LaNiPt/CeZrPrO (рис. 27). Результаты важны

для разработки топливных элементов, а также водородной энергетики.

В Институте химии и химической технологии установлено, что свойства ценосфер из энергетических зол в отношении диффузии гелия определяются составом и структурой оболочки глобул. Наиболее высокие значения гелиевой проницаемости получены для ценосфер, характеризующихся повышенным содержанием Al_2O_3 и высоким содержанием кристаллической фазы муллита. Показано существование преобладающей диффузии гелия по межфазным границам муллит—стеклофаза. Результаты важны для создания технологий сепарации гелия.

В Институте проблем переработки углеводородов разработан новый тип гемосорбента — углеродный сорбент, модифицированный аргинином при поликонденсации и термической сшивке. Изучена адсорбционная способность исследуемых образцов углеродного сорбента по отношению к маркерам белковых соединений средней молекулярной массы (14000—68000). Для лактальбумина и лизоцима, близких по свойствам к молекулам провоспалительных цитокинов и исследуемых в стендо-

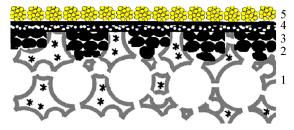
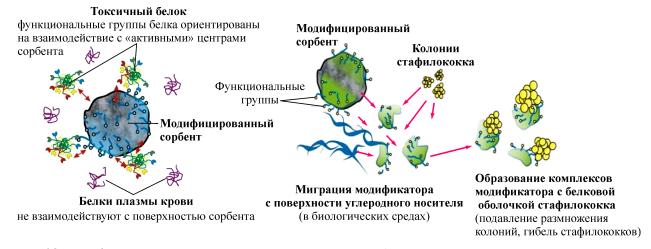



Рис. 27. Каталитическая мембрана с нанокомпозитными слоями для выделения O_2 из воздуха и использования его для конверсии CH_4 в синтез-газ: 1 — подложка из Ni—Al-пеносплава, * — иглы корунда, 2 — слой макропористого композита LSNF—GDC, 3 — слой микропористого—мезопористого композита, 4 — плотный нанокомпозитный слой шпинель—GDC, 5 — пористый каталитический слой LaNiPt/CeZrPrO.

вых испытаниях, показано, что модифицированные сорбенты обладают значительно большей адсорбционной способностью по отношению к исследуемым белкам по сравнению с исходным углеродным сорбентом. Модифицированные образцы углеродного сорбента значительно снижают уровень провоспалительных цитокинов в плазме крови при остром панкреонекрозе (рис. 28).

Рис. 28. Модифицирование углеродной поверхности пор сорбента протеиногенными полиаминокислотами — белки плазмы крови не взаимодействуют с активными центрами сорбента и не разрушаются (слева), механизм действия сорбента по отношению к стафилококку (справа).