

Федеральное государственное бюджетное учреждение науки Институт нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения Российской академии наук (ИНГГ СО РАН)

В ИНГГ СО РАН подвели итоги эксперимента по установке сейсмостанций на дрейфующих льдах в Арктике

Ученые ИНГГ СО РАН завершили анализ данных, полученных в ходе мультидисциплинарной сезонной научной экспедиции на судне «Академик Трёшников» весной 2019 года. Специалисты отработали технологию установки сейсмостанций на дрейфующих льдинах в Баренцевом море и показали, что полученные сейсмологические записи можно использовать для регистрации локальных и удаленных землетрясений, а также процессов, происходящих внутри льдины.

Почему эти исследования важны?

Согласно данным глобальных сейсмических сетей, большинство обнаруженных в Арктике землетрясений локализованы вдоль хребта Гаккеля. Другие арктические районы кажутся асейсмичными из-за низкой плотности региональной сети сейсмостанций, но ученые полагают, что это не так.

Недостаточная информация о фоновой сейсмичности создает риск неправильной оценки сейсмической опасности. Это, в свою очередь, может стать причиной аварий при промышленной разработке и освоении природных ресурсов в высоких широтах.

Один из возможных способов исследования морских акваторий Арктики — установка сейсмических сетей на льдинах. В рамках первого этапа программы «ТрансАрктика 2019» сотрудники Арктического и антарктического научно-исследовательского института (ААНИИ) Росгидромета и Института нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН провели пассивный сейсмический эксперимент. Они установили на дрейфующей льдине в северной части Баренцева моря шесть временных сейсмостанций, четыре из которых собирали данные в течение 20 дней, а две — на протяжении 14 дней.

Установка сейсмометров на дрейфующей льдине

Что удалось выяснить?

После анализа зарегистрированных данных ученые выделили несколько типов сейсмического сигнала, генерируемого ледовыми процессами. На записях специалисты зафиксировали сигналы, возникающие при сильных порывах ветра и трещинообразовании, при колебаниях ледяного покрова от волн зыби и при сдвиговых движениях льда.

По словам старшего научного сотрудника лаборатории сейсмической томографии ИНГГ СО РАН к.г.-м.н. Андрея Владимировича Яковлева, информация о частоте регистрации и длительности процессов деформирования льда может быть использована для краткосрочного прогноза нарушения ледяного покрова.

Кроме того, в результате первоначального анализа сейсмограмм был обнаружен сигнал от нескольких удаленных и региональных землетрясений. Одно из них произошло 11 апреля 2019 г. недалеко от Японии на глубине 35 км (магнитуда = 6.0).

Также ученые зафиксировали региональное землетрясение, случившееся 10 апреля 2019 г. на расстоянии около 500 км от точки измерений. К сожалению, из-за малой апертуры сети определить его точные координаты оказалось невозможным. В каталоге Международного сейсмологического центра (ISC) идентифицировать данное землетрясение также не удалось.

– Это дает основание утверждать, что использование плавучих сетей может значительно улучшить качество обнаружения сейсмичности с умеренными и небольшими магнитудами, – говорит Андрей Яковлев.

Ученые полагают, что для получения информации о сейсмическом строении земной коры Арктического региона необходимо создать сейсмическую сеть, состоящую из более чем десятка станций, расположенных на значительном удалении друг от друга и работающих не менее нескольких месяцев. Такая сеть сможет регистрировать достаточное количество землетрясений, а полученные данные могут быть использованы для изучения глубинных структур с помощью сейсмической томографии и других методов.

Справка

Полные результаты эксперимента изложены в статье в журнале «Доклады Российской академии наук. Науки о Земле». – 2021. – Т. 496. – № 2.

Текст сообщения под редакцией Павла Красина

Иллюстрации предоставлены А.В. Яковлевым