Bisimilarity, behavioral and logical equivalence for stochastic right coalgebras

Ernst-Erich Doberkat
University of Dortmund
ls10-www.cs.uni-dortmund.de
(Joint work with Christoph Schubert)

Novosibirsk
We will discuss the logic given through

$$\varphi ::= \top | \varphi_1 \land \varphi_2 | \langle a \rangle \varphi$$

with $a \in \text{Act}$, Act a countable alphabet of actions.

Interpretation through Kripke models

If $\mathcal{M} = (S, (\rightarrow_a)_{a \in \text{Act}})$ is a Kripke model (a.k.a. labeled transition system) over state space S, then

$$\mathcal{M}, s \models \langle a \rangle \varphi \text{ iff } \exists s' \in \mathcal{M} : s \rightarrow_a s'$$

(here $\mathcal{M} : s \models \varphi$).

Theory of a state

The theory of state $s \in S$ is as usual the set of formulas which are valid in this state,

$$Th_{\mathcal{M}}(s) := \{\varphi | \mathcal{M}, s \models \varphi\}.$$
Bisimilarity

Milner’s Definition

$B \subseteq S \times S'$ is a bisimulation between the Kripke models \mathcal{M} and \mathcal{M}' iff for all $\langle s, s' \rangle \in B$

- If $s \xrightarrow{a} t$, then $\exists t' \in S' : s' \xrightarrow{a}' t'$ and $\langle t, t' \rangle \in B$.
- If $s' \xrightarrow{a}' t'$, then $\exists t \in S : s \xrightarrow{a} t$ and $\langle t, t' \rangle \in B$.

Aczel’s Theorem

B is a bisimulation between \mathcal{M} and \mathcal{M}' iff there exists a transition structure $(\rightarrow''_a)_{a \in \mathcal{A}}$ on B such that

$$\mathcal{M} \leftarrow (B, (\rightarrow''_a)_{a \in \mathcal{A}}) \rightarrow \mathcal{M}'.$$

Jan Rutten’s survey paper on coalgebras, TCS, 2000
Overview

1. **Markov Transition Systems**

2. **JAP-Theorem**

3. **Coalgebraic Logic**

4. **General JAP-Theorem**

5. **Concluding Remarks**
Logic

Stochastic version adds a lower bound for the probability of satisfaction to the modal operators:

\[\varphi ::= \top | \varphi_1 \land \varphi_2 | \langle a \rangle_q \varphi \]

with \(q \in \mathbb{Q} \) and \(a \in \text{Act} \).

Intuition: State \(s \) satisfies \(\langle a \rangle_q \varphi \), provided the transition from \(s \) upon action \(a \) leads to a state that satisfies \(\varphi \) with probability at least \(q \).

Stochastic Kripke model

\(\mathcal{K} = (S, (k_a)_{a \in \text{Act}}) \) with \(k_a(s)(C) \) as the probability that action \(a \) in state \(s \) leads to a state in the measurable set \(C \subseteq S \). Note that \(k_a(s)(S) \leq 1 \).

Interpretation

\(\mathcal{K}, s \models \langle a \rangle_q \varphi \) iff \(k_a(s)([\varphi]) \geq q \).
Morphisms

Let $\mathcal{K} = (S, (k_a)_{a \in \mathcal{A}})$ and $\mathcal{K}' = (S', (k'_a)_{a \in \mathcal{A}})$ be stochastic Kripke models.

Morphism

A measurable and surjective map $f : S \rightarrow S'$ is a morphism $\mathcal{K} \rightarrow \mathcal{K}'$ iff

$$k'_a(f(s))(B') = k_a(s)(f^{-1}[B'])$$

for every measurable subset $B' \subseteq S'$ and every $s \in S$ and each action $a \in \mathcal{A}$.

Remark

$\mathcal{K}, s \models \varphi \iff \mathcal{K}', f(s) \models \varphi$ for morphism $f : \mathcal{K} \rightarrow \mathcal{K}'$.

\mathcal{K} and \mathcal{K}' are

- bisimilar iff $\mathcal{K} \leftrightarrow \mathcal{K}'' \rightarrow \mathcal{K}'$ for some \mathcal{K}'',
- behavioral equivalent iff $\mathcal{K} \rightarrow \mathcal{K}'' \leftarrow \mathcal{K}'$ for some \mathcal{K}'',
- logical equivalent iff $\{Th_\mathcal{K}(s) \mid s \in S\} = \{Th_{\mathcal{K}'}(s') \mid s' \in S'\}$.
Theorem

For stochastic Kripke models over analytic spaces with Borel measurable transition laws, these equivalences hold

Logical equivalence \Leftrightarrow Bisimilarity \Leftrightarrow Behavioral equivalence.

Remarks

More General Principle?
Coalgebraic Reformulation
Let’s see

Coalgebraic view

A Markov transition system \(\mathcal{K} = (S, (k_a)_{a \in \mathcal{A}}) \) can be understood as a map

\[
k : S \to \prod_{a \in \mathcal{A}} \mathbb{S}(S) = (F \circ \mathbb{S})(S)
\]

with \(\mathbb{S}(S) \) as the set of all subprobabilities on \(S \).
Thus \(\mathcal{K} \) is a coalgebra \((S, k)\) for the functor \(F \circ \mathbb{S} \).

|= in terms of \(k \)?

Spell out

\[
s \models (a)_q \varphi \iff k_a(s)([\varphi]) \geq q
\]

\[
\iff k_a(s) \in \{ \mu \in \mathbb{S}(S) \mid \mu([\varphi]) \geq q \}
\]

\[
\iff s \in k^{-1} \left[\{ m \in (F \circ \mathbb{S})(S) \mid \pi_a(m)([\varphi]) \geq q \} \right]
\]

\[
\iff s \in (k^{-1} \circ \lambda^{a,q}_S)([\varphi])
\]

with \(\lambda^{a,q}_S(D) := \{ m \in (F \circ \mathbb{S})(S) \mid \pi_a(m)(D) \geq q \} \).
Coalgebraic Logic

Predicate liftings

Structure of \(\lambda \)

\[\lambda^{a,q}_S : \left(\text{measurable sets in } S \right) \to \left(\text{measurable sets in } (F \circ S)(S) \right). \]

\(\lambda^{a,q} \) is a natural transformation, called a **predicate lifting** for \(F \circ S \).

Predicate liftings arose originally from the work of L. Moss, D. Pattinson, and L. Schröder.

Coalgebraic Logic

Formulas are defined through

\[\varphi ::= T \mid \varphi_1 \land \varphi_2 \mid \langle \lambda \rangle \varphi \]

with \(\lambda \in \Lambda \), \(\Lambda \) a set of predicate liftings for \(F \circ S \).

Stochastic right coalgebra

If \(F \) is a functor on a suitable category of measurable spaces, then \((S, k) \) is a **stochastic right coalgebra** for \(F \) iff \(k : S \to (F \circ S)(S) \) is a measurable map, the system dynamics.
Morphisms

A measurable map $f : S \to S'$ is a morphism $\mathcal{R} \to \mathcal{R}'$ for the stochastic right coalgebras \mathcal{R} and \mathcal{R}' iff

$$k' \circ f = (\mathbb{F} \circ \mathbb{S})(f) \circ k.$$

|=

Interpret $\langle \lambda \rangle \varphi$ in the stochastic right coalgebra $\mathcal{R} = (S, k)$ through

$$\mathcal{R}, s \models \langle \lambda \rangle \varphi \text{ iff } s \in (k^{-1} \circ \lambda_S)(\llbracket \varphi \rrbracket).$$

Observation

Since each $\lambda \in \Lambda$ is natural, we have for the morphism $f : \mathcal{R} \to \mathcal{R}'$

$$\mathcal{R}, s \models \varphi \iff \mathcal{R}', f(s) \models \varphi.$$
Separation issues

The set Λ is assumed to be separating (“there are enough liftings”). Formally:

Separation property

If \(\text{Th}_R(s) \neq \text{Th}_{R'}(s') \) for states \(s \) and \(s' \) in a right coalgebra \(R \) resp. \(R' \), then there exists a formula \(\varphi \) and a lifting \(\lambda \in \Lambda \) such that

- either \(R, s \models \langle \lambda \rangle \varphi \)
- or \(R', s' \models \langle \lambda \rangle \varphi \)

holds.

Technically, separation relates

- the equivalence relation \(\varrho \) defined by the set of formulas (through \(s_1 \varrho s_2 \) iff \(\forall \varphi : s_1 \models \varphi \iff s_1 \models \varphi \))
- to the kernel \(\ker ((\mathbb{F} \circ S)(\eta_\varrho)) \) of the image of its factor map \(\eta_\varrho \) under \(\mathbb{F} \circ S \).
The following holds for stochastic right coalgebras \mathcal{R} and \mathcal{R}' over analytic spaces and for Borel system dynamics:

1. bisimilar or behavioral equivalent stochastic right coalgebras are always logical equivalent,
2. If Λ is separating, then logical equivalent coalgebras are behavioral equivalent,
3. If Λ is separating and \mathcal{F} has the Hennessy-Milner property, then behavioral equivalent coalgebras are bisimilar.

Corollary

For separating Λ and Hennessy-Milner functor \mathcal{F},

Logical equivalence \iff Bisimilarity \iff Behavioral equivalence.
The Hennessy-Milner Property

The property

If $(S, k) \xrightarrow{f} (T, \ell) \xleftarrow{g} (S', k')$ is a cospan of surjective morphisms, then there exists a system dynamics \(m : Q \rightarrow (\mathcal{F} \circ S)(Q) \) on

\[
Q := \{ \langle s, s' \rangle \mid f(s) = g(s') \}
\]

such that the projections $(S, k) \xleftarrow{\pi_1} (Q, m) \xrightarrow{\pi_2} (S', k')$ form a span.

Theorem

The identity has the Hennessy-Milner property, and the class of functors having this property is closed under countable products and countable coproducts.

Remark

The proof hinges upon the Himmelberg-van Vleck Selection Theorem from stochastic dynamic programming, on the Hahn-Banach Theorem, and on the Riesz Representation Theorem.
CONCLUDING REMARKS

WELL, THEN

GENERALITY

The general JAP-Theorem seems to be the most general characterization of
bisimilarity for coalgebras based on the subprobability functor.

EXTENSION

Extension to more expressive logics (disjunction, negation, \(\mu \)- and
\(\nu \)-operators) by adding natural transformations.

HENNESSY-MILNER

The Hennessy-Milner-property needs further investigation (and probably a
counter example).

RIGHT VS. LEFT

Similar results hold for stochastic left coalgebras

\[
S \mapsto (S \circ F)(S).
\]