

Персонализированная медицина: вызов и решения

В.А. Степанов

НИИ медицинской генетики, Томский НИМЦ vadim.stepanov@medgenetics.ru

Стратегия научно-технологического развития РФ: 7 больших вызовов и 7 приоритетов

УКА3

ПРЕЗИДЕНТА РОССИЙСКОЙ ФЕДЕРАЦИИ

О Стратегии научно-технологического развития Российской Федерации

- 15. Наиболее значимыми с точки зрения научнотехнологического развития Российской Федерации большими вызовами являются:
- б) демографический переход, обусловленный увеличением продолжительности жизни людей, изменением их образа жизни, и связанное с этим старение населения, что в совокупности приводит к новым социальным и медицинским проблемам, в том числе к росту угроз глобальных пандемий, увеличению риска появления новых и возврата исчезнувших инфекций;
- в) возрастание антропогенных нагрузок на окружающую среду до масштабов, угрожающих воспроизводству природных ресурсов, и связанный с их неэффективным использованием рост рисков для жизни и здоровья граждан;

Приоритеты и перспективы научно-технологического развития Российской Федерации

в) переход к персонализированной медицине, высокотехнологичному здравоохранению и технологиям здоровьесбережения, в том числе за счет рационального применения лекарственных препаратов (прежде всего антибактериальных);

Программа Развития Томского НИМЦ РАН : 7 проектов (направлений)

Программа Развития Томского НИМЦ РАН

ПРОЕКТ 1. «ПОПУЛЯЦИОННАЯ И ПРОФИЛАКТИЧЕСКАЯ МЕДИЦИНА»

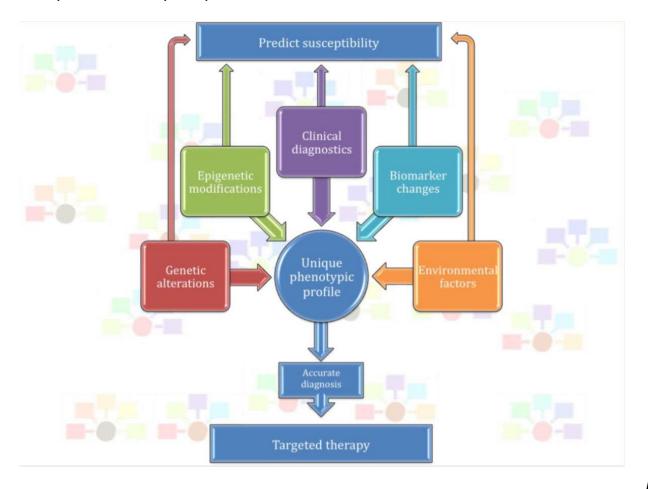
ПРОЕКТ 2. «ГЕНЕТИКА ЧЕЛОВЕКА И ПАТОЛОГИЯ»

ПРОЕКТ 3. «РЕГЕНЕРАТИВНАЯ И РЕАБИЛИТАЦИОННАЯ

МЕДИЦИНА, ВКЛЮЧАЯ КЛЕТОЧНЫЕ ТЕХНОЛОГИИ»

ПРОЕКТ 4. «ПЕРСОНАЛИЗИРОВАННАЯ МЕДИЦИНА»

ПРОЕКТ 5. «ВИЗУАЛИЗАЦИЯ В МЕДИЦИНЕ»


ПРОЕКТ 6. «ЯДЕРНАЯ МЕДИЦИНА»

ПРОЕКТ 7. «ТРАНСЛЯЦИОННАЯ МЕДИЦИНА»

Цели персонализированной медицины

Цели персонализированной медицины:

- Предсказать индивидуальную предрасположенность к болезням и выработать персональную тактику профилактики;
- Поставить точный диагноз;
- Выработать наиболее эффективную тактику лечения с учетом индивидуальных особенностей и эффектов лекарственных препаратов

Uzoezi Ozomaro, Claes Wahlestedt and Charles B Nemeroff, BMC Medicine 2013 11:132

Исторический вектор персонализированной медицины

Гален К.

Мудров М.Я. Ослер У. Боткин С.П. Флоринский В.М.

Вентер Крейг

Медицина 4 «П»

Предиктивная

предупредительная

Патисипаторная

Персонализированная

(Hood, 2007)

130-200 г.г.

Идея

1000 г.

1850-1900 г.

Клиническая практика

2000 г.

2007-2010 г.г.

Персональные геномы

130-200 г.г.. н.э.

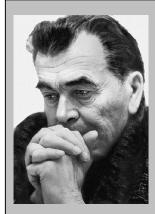
« Однако всегда нужно помнить, что ни одна внешняя причина не является эффективной сама по себе без предрасположенности организма. В противном случае, внешние причины, действующие на одного, действовали бы на всех ...»

1820-ые годы

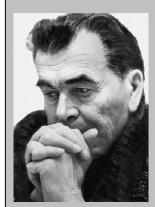
Клавдий Гален

«...врач лечит не болезнь, а больного».

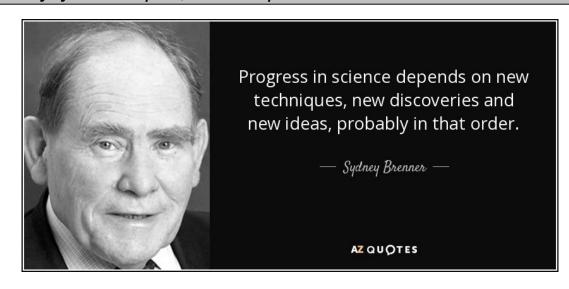
«Взять в свои руки людей здоровых, ... предписать им <u>надлежащий образ жизни</u> »

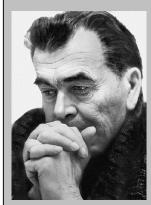

Матвей Яковлевич Мудров

1892 г.

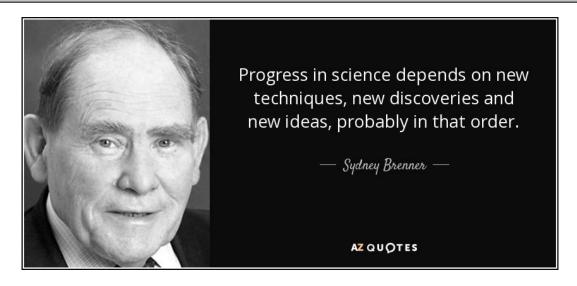

«Если бы не эта огромная межиндивидуальная изменчивость, медицина могла бы быть наукой, а не искусством»

Уильям Ослер


Одним из важных условий успеха наших работ мы считает интеграцию ... генетических идей и методов решения коренных проблем наследственности и изменчивости... Последние 20-25лет развития генетики характеризовались дифференциацией ее направлений, сейчас, по-видимому, пришло время их интеграции в единстве концепций о важнейших законах жизни.

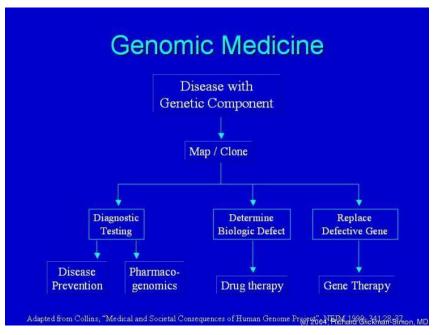

Д.К. Беляев, Генетика: Проблемы и перспективы, «За науку в Сибири», 28 января 1970

Одним из важных условий успеха наших работ мы считает интеграцию ... генетических идей и методов решения коренных проблем наследственности и изменчивости... Последние 20-25лет развития генетики характеризовались дифференциацией ее направлений, сейчас, по-видимому, пришло время их интеграции в единстве концепций о важнейших законах жизни.


Д.К. Беляев, Генетика: Проблемы и перспективы, «За науку в Сибири», 28 января 1970

Одним из важных условий успеха наших работ мы считает интеграцию ... генетических идей и методов решения коренных проблем наследственности и изменчивости... Последние 20-25лет развития генетики характеризовались дифференциацией ее направлений, сейчас, по-видимому, пришло время их интеграции в единстве концепций о важнейших законах жизни.

Д.К. Беляев, Генетика: Проблемы и перспективы, «За науку в Сибири», 28 января 1970



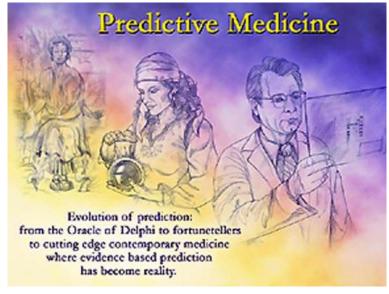
Современная персонализированная медицина

- Интеграция или конвергенция (сближение) технологий, идей, открытий основанных на достижениях медицинской генетики и геномики человека

Геномная медицина - применение знаний и разработок геномики и молекулярной генетики для диагностики, терапии и профилактики болезней и прогноза состояния здоровья (NHGRI/NIH) - A. Beaudet, 1998; B.Bloom, 1999; B.П. Пузырев и его школа, 2000

Геномная медицина - применение знаний и разработок геномики и молекулярной генетики для диагностики, терапии и профилактики болезней и прогноза состояния здоровья (NHGRI/NIH) - A. Beaudet, 1998; B.Bloom, 1999; B.П. Пузырев и его школа, 2000

Персонализированная медицина — выбор лечения, основанный на учете индивидуальных особенностей пациента — генетических, половозрастных, антропометрических, этнических, средовых и др., в отличие от «стандартного лечения», основанного на опыте клинических испытаний в больших когортных исследованиях (1999, Kewall Jane, 2002-2009), N = 1


Геномная медицина - применение знаний и разработок геномики и молекулярной генетики для диагностики, терапии и профилактики болезней и прогноза состояния здоровья (NHGRI/NIH) - А. Beaudet, 1998; B.Bloom, 1999; В.П. Пузырев и его школа, 2000

Предиктивная медицина –

основанная на данных о структуре генома и его функциях геномная медицина, помогающая не только ... поставить точный диагноз, но и ... определить наследственную предрасположенность к заболеванию, предупредить его развитие и подобрать оптимальный вариант лекарственной терапии (В.С. Баранов, 2000; 2009; 2017; Emanuel Cheraskin, 1967)

Персонализованная медицина — выбор лечения, основанный на учете индивидуальных особенностей пациента — генетических, половозрастных, антропометрических, этнических, средовых и др., в отличие от «стандартного лечения», основанного на опыте клинических испытаний в больших когортных исследованиях (1999, Kewall Jane, 2002-2009), N = 1

Геномная медицина - применение знаний и разработок геномики и молекулярной генетики для диагностики, терапии и профилактики болезней и прогноза состояния здоровья (NHGRI/NIH) - A. Beaudet, 1998; B.Bloom, 1999; B.П. Пузырев и его школа, 2000

Предиктивная медицина –

основанная на данных о структуре генома и его функциях геномная медицина, помогающая не только ... поставить точный диагноз, но и ... определить наследственную предрасположенность к заболеванию, предупредить его развитие и подобрать оптимальный вариант лекарственной терапии (В.С. Баранов, 2000; 2009; 2017; Emanuel Cheraskin, 1967)

Персонализованная медицина — выбор лечения, основанный на учете индивидуальных особенностей пациента — генетических, половозрастных, антропометрических, этнических, средовых и др., в отличие от «стандартного лечения», основанного на опыте клинических испытаний в больших когортных исследованиях (1999, Kewall Jane, 2002-2009), N = 1

4П медицина –

предиктивная, персонализованная, превентивная, патисипаторная медицина (Leroy Hood, 2007)

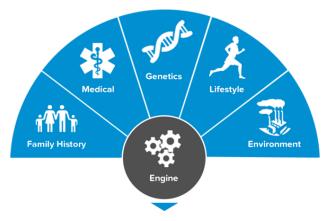
Personalized Health Care is P4/Systems Medicine

Геномная медицина - применение знаний и разработок геномики и молекулярной генетики для диагностики, терапии и профилактики болезней и прогноза состояния здоровья (NHGRI/NIH) - A. Beaudet, 1998; B.Bloom, 1999; B.П. Пузырев и его школа, 2000

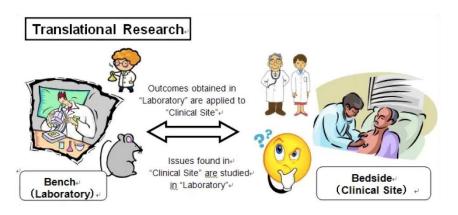
Предиктивная медицина –

основанная на данных о структуре генома и его функциях геномная медицина, помогающая не только ... поставить точный диагноз, но и ... определить наследственную предрасположенность к заболеванию, предупредить его развитие и подобрать оптимальный вариант лекарственной терапии (В.С. Баранов, 2000; 2009; 2017; Emanuel Cheraskin, 1967)

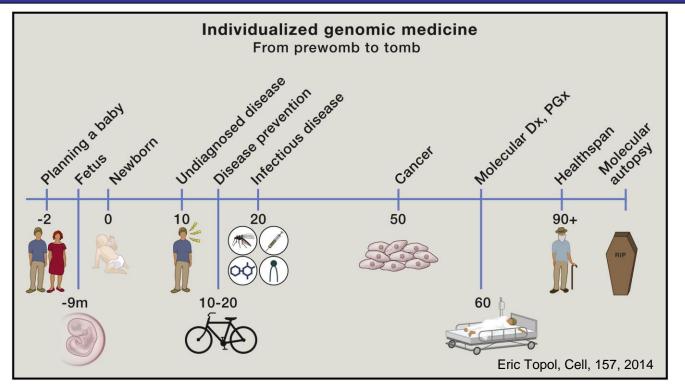
Персонализованная медицина — выбор лечения, основанный на учете индивидуальных особенностей пациента — генетических, половозрастных, антропометрических, этнических, средовых и др., в отличие от «стандартного лечения», основанного на опыте клинических испытаний в больших когортных исследованиях (1999, Kewall Jane, 2002-2009), N = 1


4П медицина –

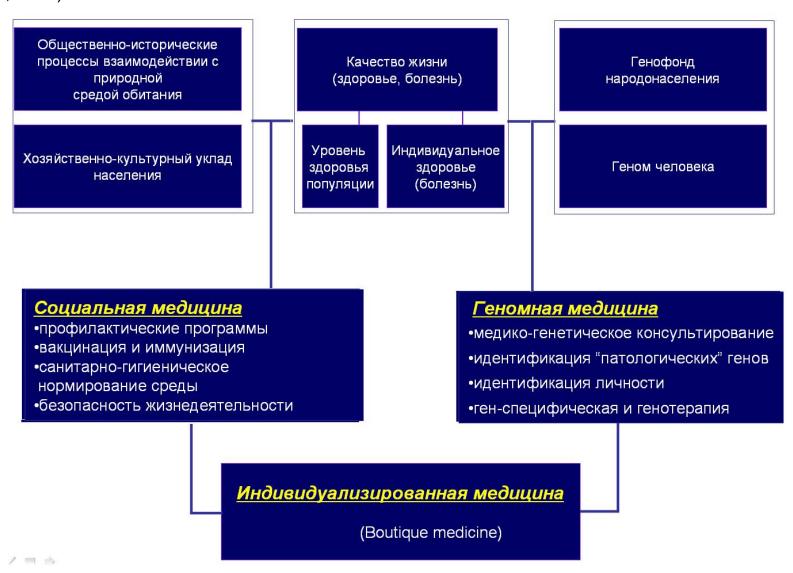
предиктивная, персонализованная, превентивная, патисипаторная медицина (Leroy Hood, 2007)


Основой всех этих идей является использование генетических (геномных) данных о роли наследственности в патологии человека, генерируемых, верифицируемых и применяемых современной **медицинской генетикой/геномикой**

Прецизионная медицина - область медицины, учитывающая индивидуальные различия в генах, микробиомах, среде, семейной истории и образе жизни для определения стратегии диагностики, лечения и профилактики, направленной точно на конкретного пациента (Nat. Res. Council, 2011;


Clayton Christenen, 2008)

Трансляционная медицина


Персонализованная геномная медицина: от матки до могилы приложения на всех стадиях индивидуального развития

- -2 планирование семьи с использованием генетической информации родителей -9m пренатальная диагностика хромосомных, моногенных болезней и ВПР 0 сиквенс генома для диагностики неонатальных генетических и врожденных патологий выявление молекулярных основ недиагностированных в неонатальный период болезней 10 20 разработка стратегии предупреждения распространенных болезней сиквенс генома патогенов для индивидуальной терапии инфекционных заболеваний омики для выявления драйверных мутаций и других биологических сигналов онкозаболея
- 50 омики для выявления драйверных мутаций и других биологических сигналов онкозаболеванй 60 молекулярная диагностика и фармакотерапия МФЗ оценка продолжительности жизни «гены болезней», протективные варианты и модификатор
- 90+ оценка продолжительности жизни «гены болезней», протективные варианты и модификаторы молекулярная аутопсия для выявления причины смерти и ее предотвращения у членов семьи и потомков

Интеграция геномной и социальной медицины

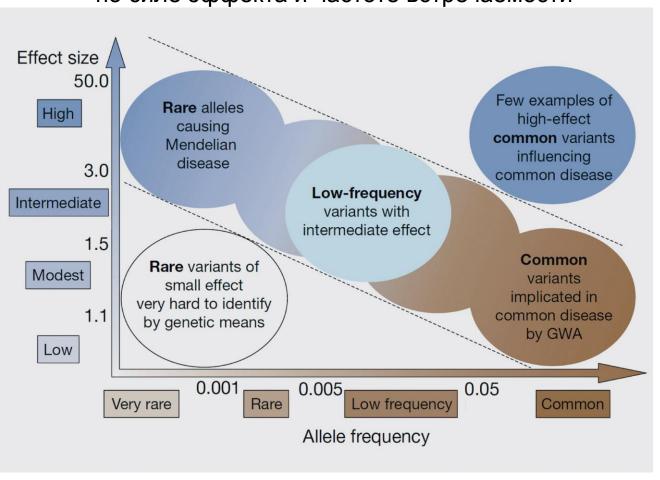
Единство трех разделов медицины - социальной, геномной и персонализированной (Пузырёв, 2001, 2003)

Персонализированная медицина – вызов науке и обществу

Персонализированная медицина - решение «больших вызовов» и, одновременно, вызов для науки и общества

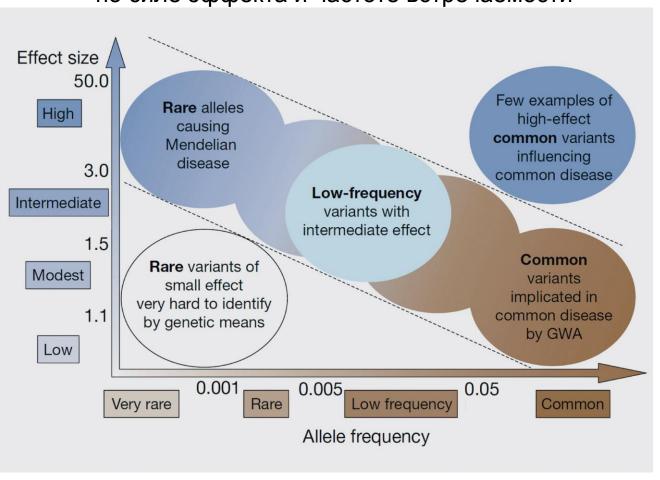
Научно-технологические вызовы:

- Научная обоснованность подходов к персональной диагностике, терапии и профилактике болезней
- Соответствие технологий и инфраструктуры потребностям ПМ

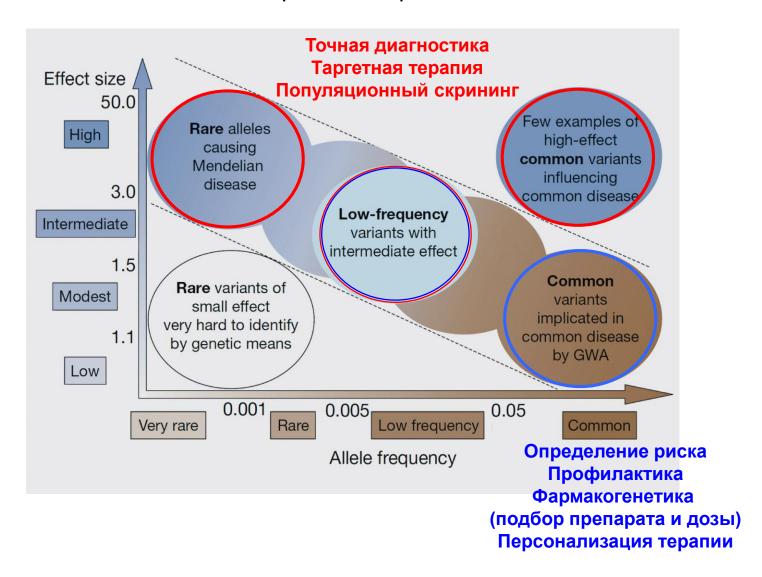

Социальные вызовы:

- **Консумеризация** (направленность на потребителя, свобода выбора, рыночная ориентация и государственное здравоохранение)
- **Респонисибилизация** (персональная ответственность за свое здоровье соотношение между социальными гарантиями и персональными потребностями в медицинских услугах)
- Индивидуализация против солидарности (все мы со своими персональными особенностями «плывем в одной лодке» Разный риск разные налоги, мед страховки? Проблема «генетической дискриминации» Баланс между нужным для всех (чистый воздух, экологические нормы, вакцинация, иммунизация и

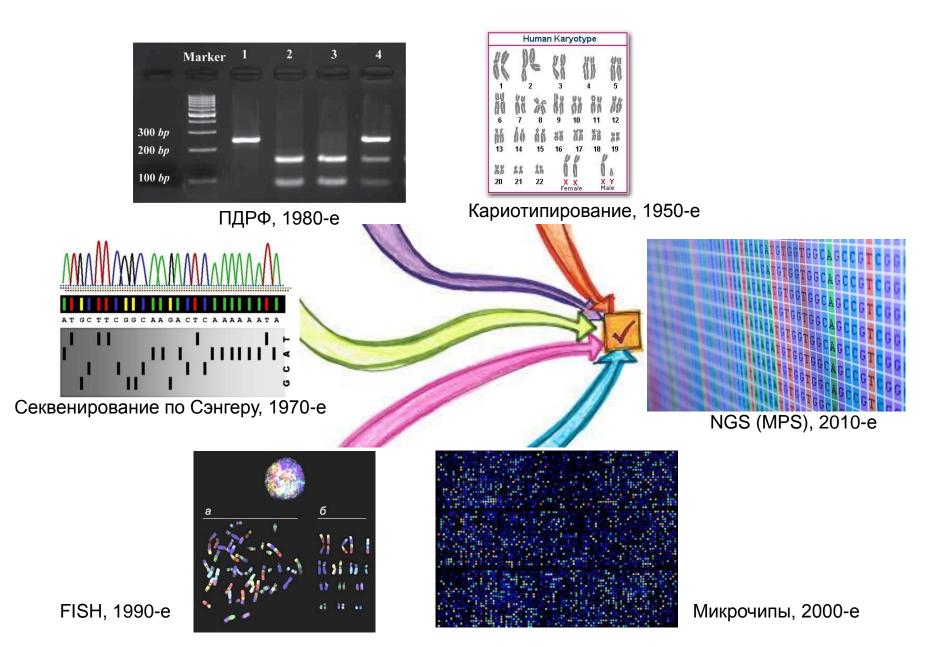
т.п.) и индивидуальными потребностями)


Персонализированная медицина: решения

Кластеризация патологических геномных вариантов по силе эффекта и частоте встречаемости


Персонализированная медицина: решения

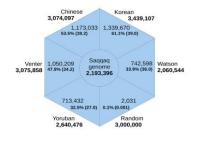
Кластеризация патологических геномных вариантов по силе эффекта и частоте встречаемости

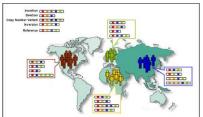


Персонализированная медицина: решения

Возможности персонализированной медицины

Конвергенция технологий

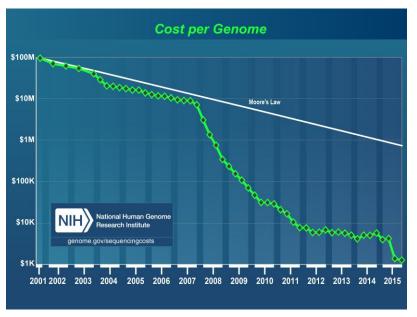



Han Brunner. How will the present time in genetics be remembered? ESHG 2017

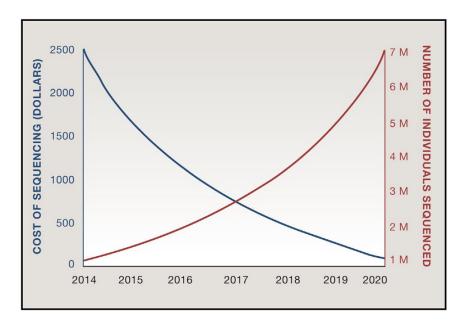
От «Генома человека» к геному индивида

1990 - 2003 Проект «Геном человека» 300 000 000 \$, 3 млрд нуклеотидов

2002 – 2010 Проект НарМар Каталог частых полиморфизмов ~6 млн SNP, 270 человек, 4 популяции


2007-2010 Индивидуальные геномы 10 000 000 \$ (геном Вентера, 2007) 10 000 – полный геном на базе NGS (2011) 1 000 \$ - сиквенс с одной молекцлы (2015)

2008 - 2011 Проект «1000 геномов»

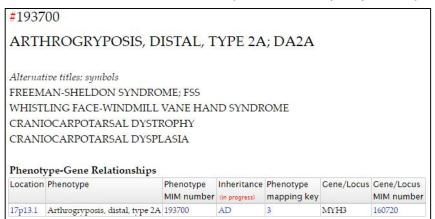

2012 – 2020 – национальные и региональные геномные проекты

2020? Геном каждого при рождении за 100 \$?

Персональная геномика – базовая технология современной персонализированной медицины

NHGRI, 2015

Topol, Cell, 2014


MPS и менделевские болезни: многообещающее начало

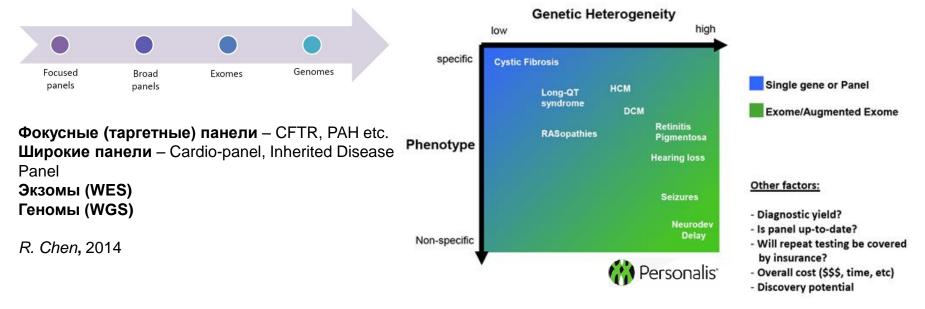
2009 - Proof of concept - Ng et al., Nature, 2009

Первая работа по применению NGS для поиска гена менделевского заболевания

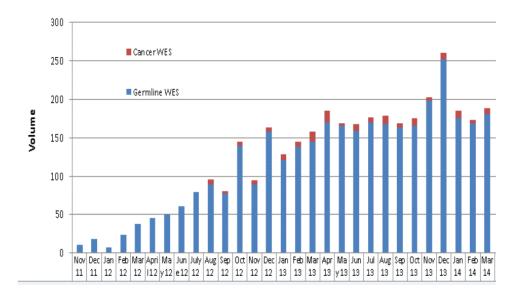
Синдром Фримена-Шелдона (артрогрипоз дистальный, тип 2A, MIM 193700) - заболевание, характеризующееся наличием двух и более врожденных контрактур (стойких ограничений движений в суставе) дистальных частей конечностей, аномалиями рта и глотки и др. проявлениями.

WES, 4 больных, 8 экзомов образцов из НарМар для сравнения

Число потенциально значимых мутаций (SNP, InDel) в 4 экзомах							
		FSS24895	FSS24895 FSS10208	FSS24895 FSS10208 FSS10066	FSS24895 FSS10208 FSS10066 FSS22194	Any 3 of 4 FSS24895 FSS10208 FSS10066 FSS22194	
each	Non-synonymous cSNP, splice site variant or coding indel (NS/SS/I)	4,510	3,284	2,765	2,479	3,768	
ich	NS/SS/I not in dbSNP	513	128	71	53	119	
es in	NS/SS/I not in eight HapMap exomes	799	168	53	21	160	
Number of gen affected has	NS/SS/I neither in dbSNP nor eight HapMap exomes	360	38	8	1 (MYH3)	22	
	And predicted to be damaging	160	10	2	1 (<i>MYH3</i>)	3	


2010 - Ng, S. B. et al. Exome sequencing identifies the cause of a mendelian disorder. *Nature Genet.* – первое открытие гена, вызывающего менделевскую болезнь (синдром Миллера) WES

2010 - Hoischen, A. *et al. De novo* mutations of *SETBP1* cause Schinzel–Giedion syndrome. *Nature Genet.* – **первое NGS-открытие мутации** *de novo* при редком синдроме (Шинцеля-Гидеона) **WES**


Число новых генов редких болезней, открытых с помощью NGS (WES) в сравнении с обычными подходами (Boycott et al., Nat Genet, 2017)

NGS и менделевские болезни: что секвенировать?

Клинические экзомы (WES), Бейлоровский колледж медицины 11.2011 – 03.2014

2500 пациентов 85% - дети, 15% - взрослые Наиболее частые болезни – неврология, УО Постановка/уточнение диагноза – 25%

Преимущества:

- 20% диагнозов в новых генах, открытых в 2012-13
- -Обнаруживает больных с более чем 1 менделевской болезнью
- Обнаруживает рецессивные болезни, вызванные UPD (6 случаев)

MPS и менделевские болезни: множество путей к цели

	Main contact	Medical record	Sequencing, including sample prep	Data analysis, including filtering	Interpretation and reporta	Counselingb
CGC1	LAB	CLINGEN	LAB	BOINF (diagnostics)	LAB	NA
CGC2	Postdoc	CLINGEN	Sequencing facility	BOINF (research)	LAB and CLINGEN	NA
CGC3	LAB	LAB	LAB	BOINF (diagnostics)	CLINGEN	NA
CGC4	LAB	Multidisciplinary meeting	LAB	LAB	LAB and CLINGEN	NA
CGC5	LAB	LAB	LAB	BOINF (diagnostics)	LAB	CARDIO
CGC6	LAB	Multidisciplinary meeting	Sequencing facility	LAB	LAB	NA
CGC7	LAB	LAB and CLINGEN	LAB	BOINF (diagnostics)	LAB	NA
CGC8	LAB	Multidisciplinary meeting	LAB	BOINF (diagnostics)	LAB	NA

Abbreviations: BIOINF, bioinformatician; CARDIO, cardiologist; CLINGEN, clinical geneticist; LAB, laboratory specialist clinical genetics; NA, not assessed.

"This involves the selection of causal variants and relevant variants of unknown significance to be reported back to the referring specialists. Reports (also referred to as 'outcome letters') comprise

Table 2 Diagnosis for 9 CARDIO patients^a

Vrijenhoeck, EJHG, 2015

	_							
Patient	CGC 1	CGC 2	CGC 3	CGC 4	CGC 5	CGC 6	CGC 7	CGC 8
1	TNNI3							
2	MYBPC3							
3	MYH7							
4	-	-	-	_	-	-	MYH7	-
5	LMNA	NA						
6	MYBPC3							
7	MYBPC3							
8	PLN							
9	GLA	MYBPC3	MYBPC3	MYBPC3	MYBPC3	MYBPC3	MYBPC3	-

8 ССС (клиникогенетических центров) в Нидерландах 9 пациентов с кардиомиопатией (установлен диагноз и найдены мутации)

Оценка истории болезни:

LAB, CLINGEN, Multi

Сиквенс:

Геном, экзом, кардиопанель

Анализ данных:

BIOINF, LAB

Интерпретация:

LAB, CLINGEN

Результат:

1 CGC - 9/9

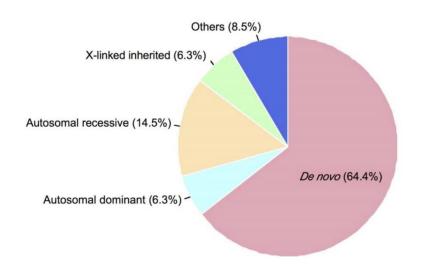
5 CGC - 8/9

1 CGC - 6/8

1 CGC - 7/9 + 1 неверно

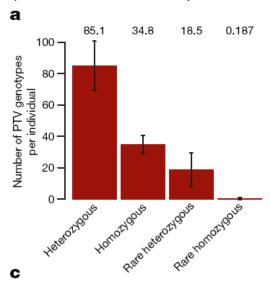
^aEach center independently provided a diagnosis for each patient based on the most likely gene mutation. The table cells indicate in which gene the particular center identified the causal variant for the corresponding patient. Discordant diagnoses are indicated in bold. Only one center reported a causal mutation for patient 4. NA, not assessed; '-', no causal variant reported.

Counseling was not literally done as a part of this study, but CGC 5 provided a summary of the counseling that would be done for each patien

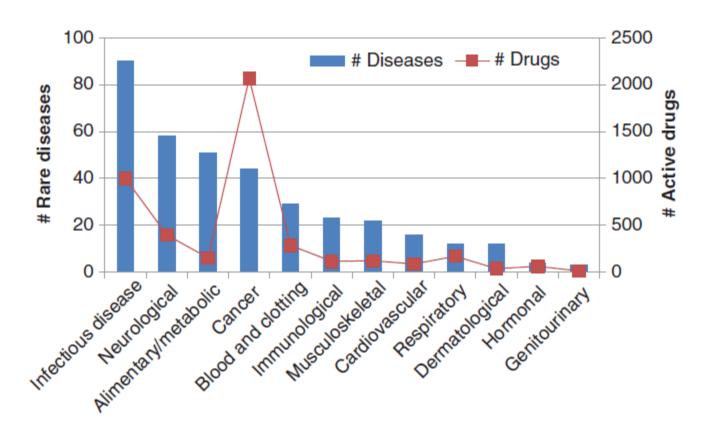

MPS и редкие (орфанные) болезни

РЕДКОЕ (ОРФАННОЕ) ЗАБОЛЕВАНИЕ (rare disease) – это встречающееся с определенной частотой, жизнеугрожающее или хроническое прогрессирующее заболевание, без лечения приводящее к смерти или инвалидизации больного. В России - < 1:10000. Перечень из 24 орфанных болезней.

УЛЬТРА-РЕДКИЕ ЗАБОЛЕВАНИЯ (ultra-rare disease) – частота < 1:50000.


The Deciphering Developmental Disorders Study (DDDS, Nature, 2014)

- -1133 пациента с тяжелыми недиагностированными DD
- WES + aCGH
- -12 новых генов
- 31% установленных диагнозов (в т.ч. 3% в новых генах)


Exome Aggregation Consortium (ExAC) (Lek et al., *Nature, Aug 2016*)

- 60706 экзомов
- 3230 генов с полной делецией гена или укороченным белком
- 72% (2300 генов) не связаны с фенотипом в ОМІМ **ресурс для редких и ультра-редких болезней**
- 85 гетеро- и 35 гомозигонтых PTV (protein-truncated variant) на экзом, включая 20 редких

Терапия редких заболеваний

КОЛИЧЕСТВО РЕДКИХ ЗАБОЛЕВАНИЙ И РАЗРАБАТЫВАЕМЫХ ДЛЯ ИХ ЛЕЧЕНИЯ ПРЕПАРАТОВ В ЗАВИСИМОСТИ ОТ ПОРАЖЕНИЯ СИСТЕМЫ ОРГАНОВ

Л.П. Назаренко no Stephens J, Blazynski C Rare disease landscape: will the blockbuster model be replaced? Expert Opinion on Orphan Drugs 2014 2:8, 797-806

Терапия редких заболеваний

ТЕРАПЕВТИЧЕСКИЕ ПОДХОДЫ К ЛЕЧЕНИЮ РЕДКИХ ГЕНЕТИЧЕСКИХ ЗАБОЛЕВАНИЙ

Подход	Лечение	Заболевание					
Потеря функции белка (рецессивные заболевания)							
Замещение ДНК	Генная терапия	Тяжелый комбинированный иммунодефицит					
	Трансплантация костного мозга	Мукополисахаридозы					
Коррекция сплайсинга	Антисмысловые олигонуклеотиды	Мышечная дистрофия Дюшенна*					
	Маленькие молекулы	Семейная дизавтономия *					
Увеличение мРНК	Маленькие молекулы	Спинальная мышечная атрофия*					
Замещение белка	Фермент замещающая терапия	Лизосомные болезни					
Увеличение активности,	Прочитывание «сквозь» терминатор трансляции	Мышечная дистрофия Дюшенна*					
стабильности или уровня белка	Шаперон терапия	Муковисцидоз, транстиретин амилоидоз					
	Ингибирование протеосом	Болезнь Помпе*					
Приобретение функции белка (доминантные заболевания)							
Снижение	Антисмысловые олигонуклеотиды	Миотоническая дистрофия*					
транскрипции	РНК интерференция	Болезнь Гентингтона*					
Ингибирование белка	Маленькие молекулы	Синдром Нунан*					

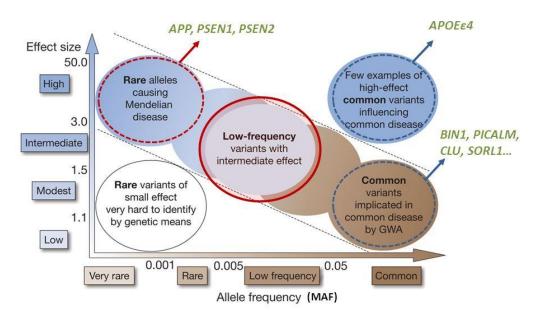
Л.П. Назаренко no Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet. 2013 Oct;14(10):681-91.

Прецизионная медицина для менделевских болезней

Лекарственный препарат, влияющий на причину, а не на симптомы муковисцидоза

Потенциаторы (Калидеко) - класс лекарственных препаратов, которые корректируют работу каналов, что позволяет улучшить транспорт ионов хлора.

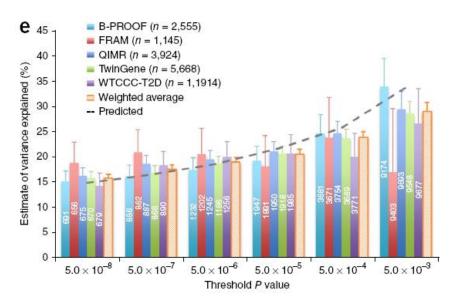
Корректоры (VX-809) - класс лекарственных препаратов, которые позволяют аномальной форме белка СFTR пройти через внутриклеточную систему контроля качества и занять правильное расположение на поверхности мембраны.


Looking at genes – ~95% of heritability is missing

The case of the missing heritability

When scientists opened up the human genome, they expected to find the genetic components of common traits and diseases. But they were nowhere to be seen. **Brendam Maher** shines a light on six places where the missing loot could be stashed away.

"Missing heritability" in Alzheimer disease

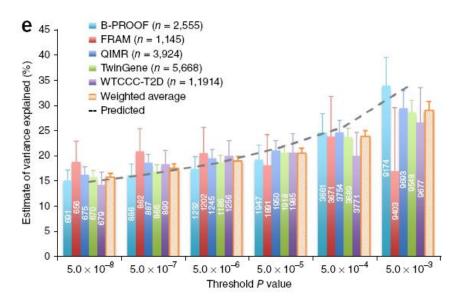

GWAS, NGS и упущенная наследуемость

Wood et al (~450 соавторов), Nature Genetics 2014.

Defining the role of common variation in the genomic and biological architecture of adult

human height

Рост. h = 60-70% Мета-анализ 79 GWAS N = 253,288 9500 SNPs объясняют 29% наследуемости роста


GWAS, NGS и упущенная наследуемость

Wood et al (~450 соавторов), Nature Genetics 2014.

Defining the role of common variation in the genomic and biological architecture of adult

human height

Рост. h = 60-70% Мета-анализ 79 GWAS N = 253,288 9500 SNPs объясняют 29% наследуемости роста

Yang et al., Nature Genetics 2015 Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index

WGS

N = 44,126

17 mln imputed SNPs

Рост: 56% вариабельности (h = 60-70%)

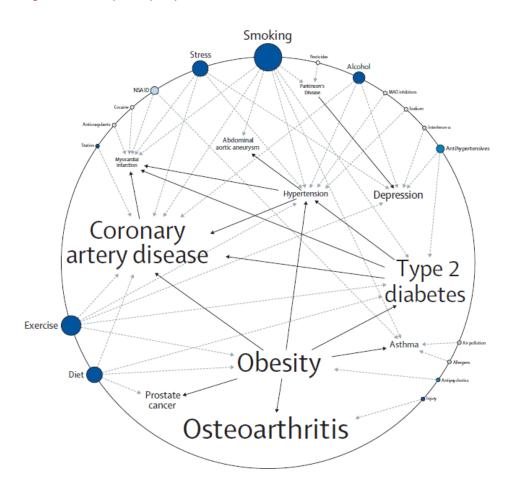
BMI: 27% вариабельности (h = 30-40%)

Персональная геномика и риск частых заболеваний

Персональная геномика и риск частых заболеваний

Мои «гены ожирения»

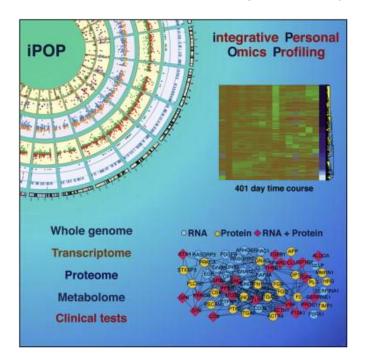
Ген	SNP	Генотип	Влияние	Вклад	Достоверность	Исследования
FTO (fat mass and obesity associated)	rs1421085	AG	1	1.13	***	PMID17496892
FTO (fat mass and obesity associated)	rs17817449	AC	1	1.13	***	PMID17658951
FTO (fat mass and obesity associated)	rs1121980	AG	↑	1.45	***	PMID18159244
SLC6A14 (Solute Carrier Family 6 (Amino Acid Transporter), Member 14)	rs2071877	GG	↓	0.87	***	omim300306.
APOA2 (Apolipoprotein A2)	rs5082	AG	↓	0.87	**	PMID17446329
CTNNBL1 (Catenin, Beta Like 1)	rs6013029	AA	↑	1.23	***	PMID18325910
APOA5 (Apolipoprotein A5)	rs662799	AA	↓	0.87	***	PMID17211608
KLF7 (Kruppel-like factor 7)	rs7568369	СС	↓	0.87	***	PMID19147600
PCSK1 (proprotein convertase subtilisin/kexin type 1)	rs6232	AA	\	0.87	***	PMID18604207
FAM71F1 (family with sequence similarity 71, member F1)	rs6971091	AG	<u> </u>	1.73	**	PMID18317470

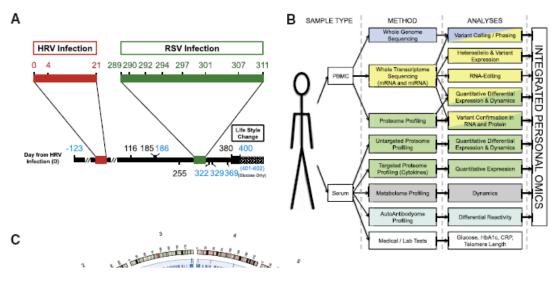

Дотестовый риск: 31% (частота ожирения у мужчин > 40 лет)

Кумулятивный генетический риск: 1.96

Послетестовый риск: 61%

Clinical assessment incorporating a personal genome


Euan A Ashley, Atul J Butte, Matthew T Wheeler, Rong Chen, Teri E Klein, Frederick E Dewey, Joel T Dudley, Kelly E Ormond, Aleksandra Pavlovic, Alexander A Morgan, Dmitry Pushkarev, Norma F Neff, Louanne Hudgins, Li Gong, Laura M Hodges, Dorit S Berlin, Caroline F Thorn, Katrin Sangkuhl, Joan M Hebert, Mark Woon, Hersh Sagreiya, Ryan Whaley, Joshua W Knowles, Michael F Chou, Joseph V Thakuria, Abraham M Rosenbaum, Alexander Wait Zaranek, George M Church, Henry T Greely, Stephen R Quake, Russ B Altman



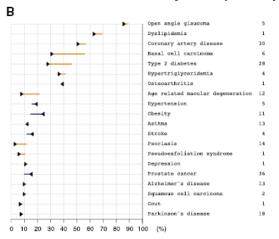
Интеграция омик для персонализированной медицины

Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes

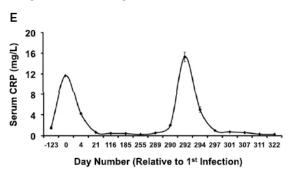
Rui Chen, ^{1,11} George I. Mias, ^{1,11} Jennifer Li-Pook-Than, ^{1,11} Lihua Jiang, ^{1,11} Hugo Y.K. Lam, ^{1,12} Rong Chen, ^{2,12} Elana Miriami, ¹ Konrad J. Karczewski, ¹ Manoj Hariharan, ¹ Frederick E. Dewey, ³ Yong Cheng, ¹ Michael J. Clark, ¹ Hogune Im, ¹ Lukas Habegger, ^{6,7} Suganthi Balasubramanian, ^{6,7} Maeve O'Huallachain, ¹ Joel T. Dudley, ² Sara Hillenmeyer, ¹ Rajini Haraksingh, ¹ Donald Sharon, ¹ Ghia Euskirchen, ¹ Phil Lacroute, ¹ Keith Bettinger, ¹ Alan P. Boyle, ¹ Maya Kasowski, ¹ Fabian Grubert, ¹ Scott Seki, ² Marco Garcia, ² Michelle Whirl-Carrillo, ¹ Mercedes Gallardo, ^{9,10} Maria A. Blasco, ⁹ Peter L. Greenberg, ⁴ Phyllis Snyder, ¹ Teri E. Klein, ¹ Russ B. Altman, ^{1,5} Atul J. Butte, ² Euan A. Ashley, ³ Mark Gerstein, ^{6,7,8} Kari C. Nadeau, ² Hua Tang, ¹ and Michael Snyder^{1,*}

Редкие варианты

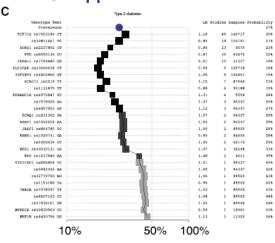
Α

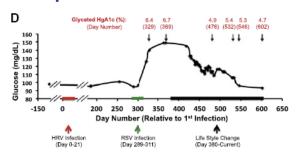

High Interest Disease-Associated Rare Variants.

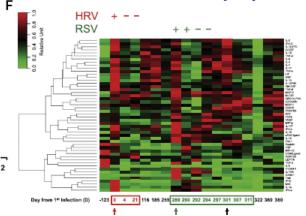
Gene	Position	Genotype	OMIM
SERPINA1	14:94844947	C/T	Emphysema due to AAT deficiency
TERT	5:1294397	C/T	Aplastic anemia
KCNJ11	11:17409571	T/T	Type 2 diabetes
GCKR	2:27730939	T/T	Hypertriglyceridemia
NUP54	4:77055431	G/A	Nuclear Pore Complex Protein


High Interest Drug-Related Variants.

Gene	rsID	Genotype	Drug Response Affected
	rs10811661	C/T	Troglitazone (Increased Beta-Cell Function)
CYP2C19	rs12248560	C/T	Clopidogrel (Increased Activation)
LPIN1	тя10192566	G/G	Rosiglitazone (Increased Effect)
SLC22A1	rs622342	A/A	Metformin (Increased Effect)
VKORC1	rs9923231	C/T	Warfarin (Lower Dose Required)


Пост-тестовый риск (WGS) МФ3

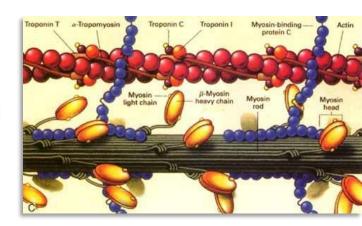

Уровень С-реактивного белка

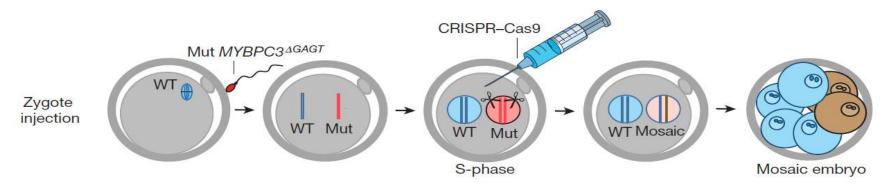

Риск СД2

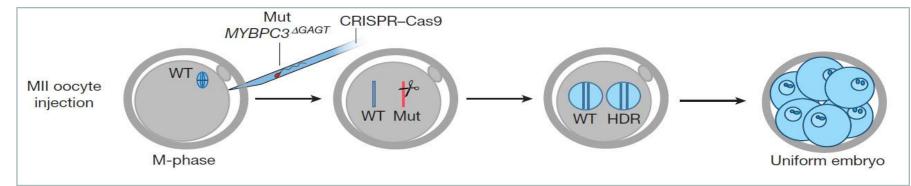
Уровень глюкозы

Цитокиновый профиль

Редактирование генома для целей персонализированной медицины

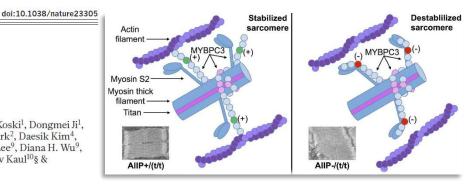

Первый успешный пример редактирования аутосомнодоминантной мутации в эмбрионах человека: МҮВРСЗ, Гипертрофическая кардиомиопатия

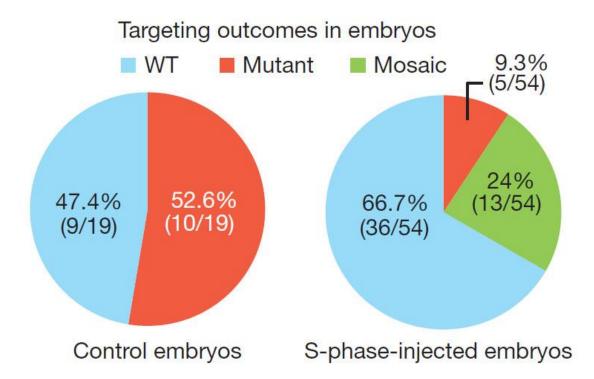

ARTICLE

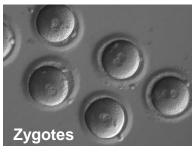

doi:10.1038/nature23305

Correction of a pathogenic gene mutation in human embryos

Hong Ma^{1*}, Nuria Marti-Gutierrez^{1*}, Sang-Wook Park^{2*}, Jun Wu^{3*}, Yeonmi Lee¹, Keiichiro Suzuki³, Amy Koski¹, Dongmei Ji¹, Tomonari Hayama¹, Riffat Ahmed¹, Hayley Darby¹, Crystal Van Dyken¹, Ying Li¹, Eunju Kang¹, A.- Reum Park², Daesik Kim⁴, Sang-Tae Kim², Jianhui Gong^{5,6,7,8}, Ying Gu^{5,6,7}, Xun Xu^{5,6,7}, David Battaglia^{1,9}, Sacha A. Krieg⁹, David M. Lee⁹, Diana H. Wu⁹, Don P. Wolf¹, Stephen B. Heitner¹⁰, Juan Carlos Izpisua Belmonte³§, Paula Amato^{1,9}§, Jin-Soo Kim^{2,4}§, Sanjiv Kaul¹⁰§ & Shoukhrat Mitalipov^{1,10}§





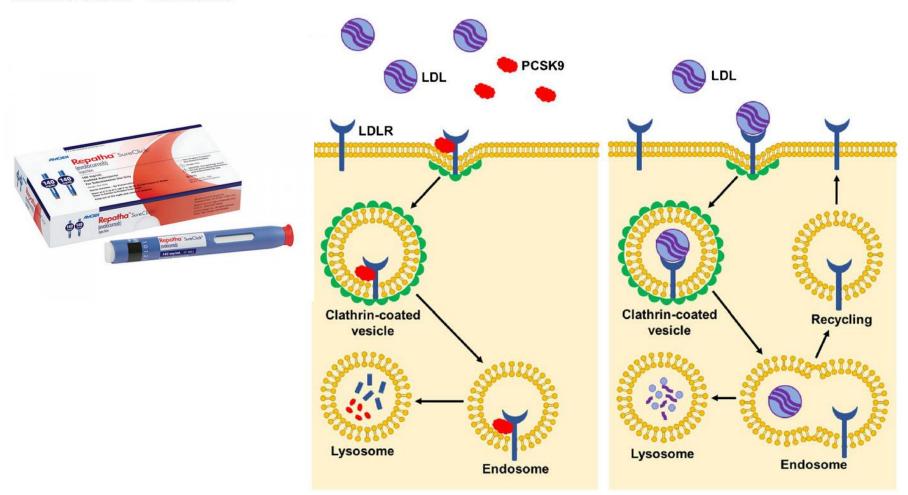

ARTICLE

Correction of a pathogenic gene mutation in human embryos

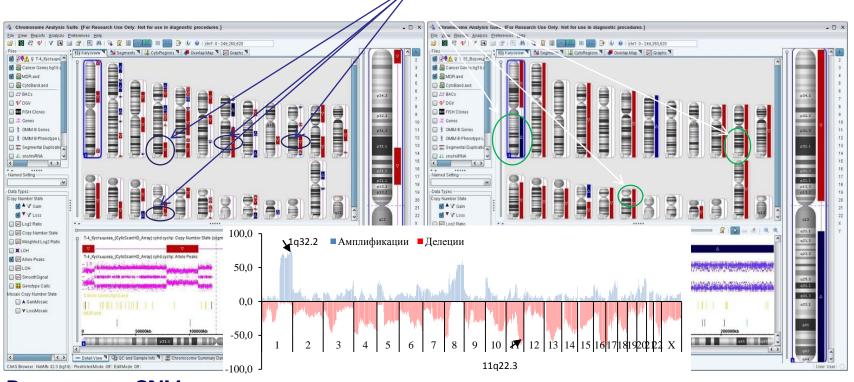
Hong Ma^{1*}, Nuria Marti-Gutierrez^{1*}, Sang-Wook Park^{2*}, Jun Wu^{3*}, Yeonmi Lee¹, Keiichiro Suzuki³, Amy Koski¹, Dongmei Ji¹, Tomonari Hayama¹, Riffat Ahmed¹, Hayley Darby¹, Crystal Van Dyken¹, Ying Li¹, Eunju Kang¹, A.-Reum Park², Daesik Kim⁴, Sang-Tae Kim², Jianhui Gong^{5,6,7,8}, Ying Gu^{5,6,7}, Xun Xu^{5,6,7}, David Battaglia^{1,9}, Sacha A. Krieg⁹, David M. Lee⁹, Diana H. Wu⁹, Don P. Wolf¹, Stephen B. Heitner¹⁰, Juan Carlos Izpisua Belmonte³§, Paula Amato^{1,9}§, Jin-Soo Kim^{2,4}§, Sanjiv Kaul¹⁰§ & Shoukhrat Mitalipov^{1,10}§

Редактирование генома для целей персонализированной медицины

Cuir Atheroscler Rep (2017) 19:32 DOI 10.1007/s11883-017-0668-8



GENETICS AND GENOMICS (A. MARIAN, SECTION EDITOR)


Лечение дислипидемий с помощью технологий редактирования генома

Treatment of Dyslipidemia Using CRISPR/Cas9 Genome Editing

Alexandra C. Chadwick¹ · Kiran Musunuru^{1,2}

Персонализация терапии онкологических заболеваний

Выявлены CNV в определенных регионах хромосом, сопряженные с эффективностью HXT:

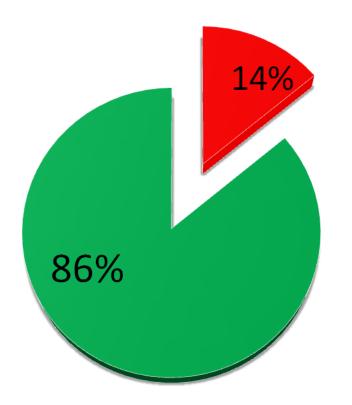
- •делеция локусов генов АВС:
- ABCB1-7q21.1, ABCB3-6p21.32, ABCC1-16p13.1,
- •ABCG2-4q22, MVP-16p11.2
- •делеция *18р11.21* региона
- •делеция 11q22.1 23.3 региона
- •амплификация1q24.1-43 региона

Хромосомные аберрации в клетках опухоли: связь с эффективностью XT

СИБИРСКИЙ ОНКОЛОГИЧЕСКИЙ ЖУРНА П 2014 №

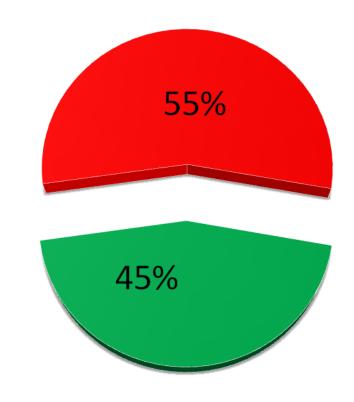
ЛАБОРАТОРНЫЕ И ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

УДК: 618.19-006.6:615.28:575.224.23


МИКРОМАТРИЧНЫЙ АНАЛИЗ АНОМАЛИЙ ЧИСЛА КОПИЙ ДНК ОПУХОЛИ МОЛОЧНОЙ ЖЕЛЕЗЫ: СВЯЗЬ С ЭФФЕКТОМ НЕОАДЪЮВАНТНОЙ ХИМИОТЕРАПИИ

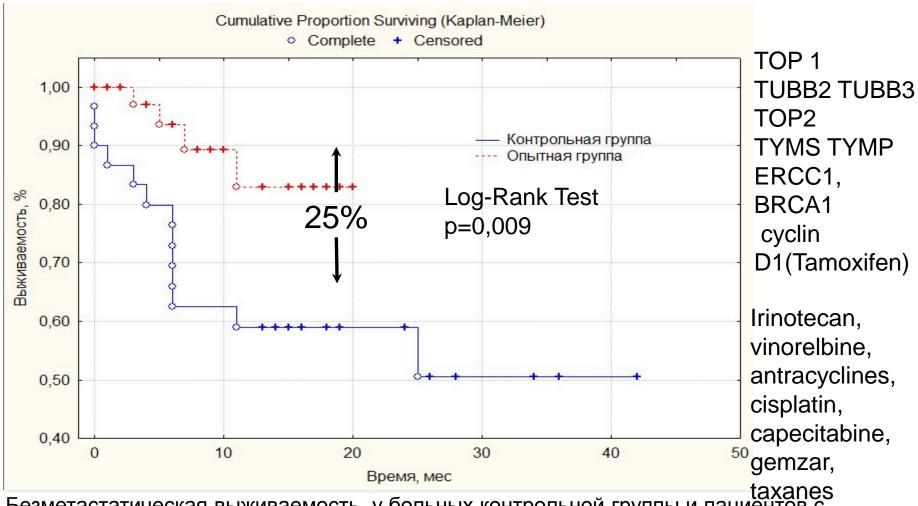
Н.В. Литвяков^{1,2}, М.М. Цыганов^{1,2}, Н.В. Чердынцева^{1,2,2}, Е.М. Слонимская^{1,2}, П.В. Иваньковская¹, М.К. Ибрагимова¹, Е.Ю. Гарбуков¹, С.А. Коростелев⁴, О.Ю. Потапова³, Е.Л. Чойнзонов^{1,2}

Персонализация терапии онкологических заболеваний


Персонализация назначения XT дает выигрыш в эффективности

Эффективность НАХТ в группе с персонализацией (n=21)

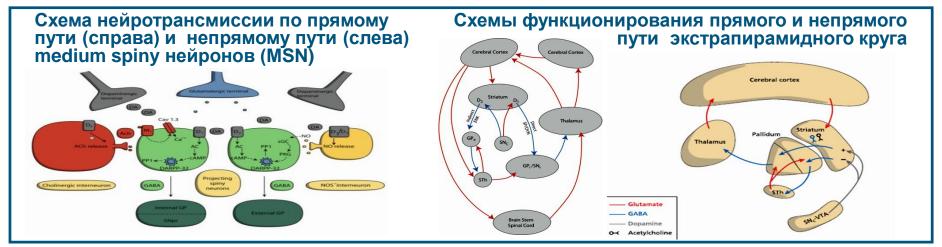
- Стабилизация (n=3)
- Частичная и полная регрессия (n=18)


Эффективность HAXT в контрольной группе (n=71)

- Частичная и полная регрессия (n=32)
- Стабилизация и прогрессирование (n=39)

Персонализация терапии онкологических заболеваний

Персонализация назначения XT дает выигрыш в выживаемости


Безметастатическая выживаемость у больных контрольной группы и пациёнтов с персонифицированным назначением АХТ

Фармакогенетика антипсихотик-индуцированной тардивной дискинезии у больных шизофренией

Выявлены особенности механизмов возникновения лекарственно-индуцированных дискинезий у больных с психическими и неврологическими расстройствами, которые связаны с нарушениями в функционировании экстрапирамидных путей и NMDA рецепторно-индуцированной эксайтотоксичности.

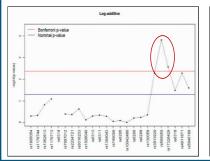
Показаны ассоциации генетических полиморфизмов субъединиц *GRIN2A* NMDA-рецепторов с леводопа-индуцированными дискинезиями при болезни Паркинсона и тардивной дискинезией у больных шизофренией на фоне антипсихотической терапии.

Результаты могут служить основой для разработки технологии прогнозирования риска развития дискинезий в рамках концепции персонализированной терапии.

ФЦП 2012-1.3.2-12-000-1002-2614 «Роль полиморфных вариантов генов системы детоксикации ксенобиотиков в патогенезе лекарственноиндуцированных двигательных нарушений у больных эндогенными психическими расстройствами» (2012–2013).

РФФИ 12-04-33072 «Патогенез двигательных нарушений у больных эндогенными психическими расстройствами на фоне антипсихотической терапии: роль фармакогенетических факторов» (2013–2014).

РФФИ № 14-04-31876 мол_а «Эксайтотоксичность и деструктивные процессы в патогенезе лекарственно-индуцированных двигательных расстройств у больных шизофренией» (2014–2015).


РНФ 17-75-10055 «Фармакогенетика тардивной дискинезии при шизофрении: роль полиморфизмов генов мускариновых, адренергических и глутаматных рецепторов» (2017–2018).

- Ivanova SA, Toshchakova VA, Filipenko ML, Fedorenko OY, Boyarko EG, Boiko AS, Semke AV, Bokhan NA, Aftanas LI, Loonen AJ. Cytochrome P450 1A2 co-determines neuroleptic load and may diminish tardive dyskinesia by increased inducibility. World J Biol Psychiatry. 2015 Apr;16(3):200-5. http://dx.doi.org/10.3109/15622975.2014.995222 (IF 4,15)
- Fedorenko O.Y, Loonen A.J.M., Lang F., Toshchakova V.A., Boyarko E.G., Semke A.V., Bokhan N.A., Govorin N.V., Aftanas L.I., Ivanova S.A. Association study indicates a protective role of phosphatidylinositol-4-phosphate-5-kinase against tardive dyskinesia. Int J Neuropsychopharmacol. 2015. 18 (6) p.1-6: DOI: http://dx.doi.org/10.1093/ijnp/pyu098 (IF 4.333).
- Ivanova S.A., Geers L.M., Al Hadithy A.F., Pechlivanoglou P., Semke A.V., Vyalova N.M., Rudikov E.V., Fedorenko O.Y., Wilffert B., Bokhan N.A., Brouwers J.R., Loonen A.J. Dehydroepiandrosterone sulphate as a putative protective factor against tardive dyskinesia. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2014 Apr 3; 50: 172-7. DOI: 10.1016/j.pnpbp.2013.12.015 (IF 4,361)
- Anton J. M. Loonen, Svetlana A. Ivanova New insights into the mechanism of drug-induced dyskinesia. CNS Spectrums 2013 Volume 18 Issue 01 pp 15-20 doi: 10.1017/S1092852912000752 (**IF 3,589**)
- Ivanova S.A., Al Hadithy A.F., Brazovskaya N., Semke A., Wilffert B., Fedorenko O., Brouwers J.R., Loonen A.J. No involvement of the adenosine A2A receptor in tardive dyskinesia in Russian psychiatric inpatients from Siberia. Hum Psychopharmacol. 2012. V. 27. N. 3. P. 334—337. doi: 10.1002/hup.2226. (IF 2.097).
- Ivanova S. A., Loonen A. J. M., Pechlivanoglou P., Freidin M. B., Al Hadithy A. F. Y. Rudikov E. V., Zhukova I. A., Govorin N. V., Sorokina V. A., Fedorenko O., Alifirova V. M., Semke A. V., Brouwers J. R. B. J., Wilffert B. NMDA receptor genotypes associated with the vulnerability to develop dyskinesia. Translational Psychiatry. 2012. V. 2. N. 1.: e67; doi:10.1038/tp.2011.66 (www.nature.com/tp) (IF 5.62).

Фармакогенетика антипсихотик-индуцированной гиперпролактинемии у больных шизофренией

На основании исследования 88 однонуклеотидных полиморфных вариантов 19 генов различных систем, гипотетически участвующих в патогенезе антипсихотик-индуцированной гиперпролактинемии (HTR2C, HTR3A, HTR3B, HTR6, HTR2A, HTR1A, HTR1B, DRD1, DRD2, DRD2/ANKK1, DRD3, DRD4, CYP1A2*1F, CYP2D6*3, CYP2D6*4, CYP2C19*3, CYP2C19*17, CYP2C19*2, GSTP1), анализе социодемографических и клинических данных 481 пациентов с шизофренией, получающих антипсихотическую терапию разработана молекулярногенетическая панель риска развития гиперпролактинемии. Получена наилучшая дискриминантная модель со следующими предикторами: возраст, пол, хлорпромазиновый эквивалент, rs1176744, rs10042486, rs936461, rs134655, rs179997, rs1076562, rs3773678, rs167771, rs1587756, rs3892097, rs1341239, rs4975646, rs133333066. Разработано "ноу-хау" «Способ прогнозирования гиперпролактинемии у больных шизофренией, получающих антипсихотическую терапию».

Выявлена ассоциация между антипсихотикиндуцированной гиперпролактинемией у больных шизофренией и X-хромосомным гаплотипом, состоящим из полиморфных вариантов rs569959 rs17326429 гена HTR2C серотонинового рецептора Впервые продемонстрирована роль полиморфизма rs1341239 (-1149 G/T) гена пролактина в развитии антипсихотик-индуцированной гиперпролактинемии

Genotypes,	With HP n (%)	Without HP n (%)	OR		χ^2	p
alleles			Estimate	95% CI		
GG	94 (41.6%)	60 (27.6%)	1.86	1,25-2,77	9.49	0.009
GT	95 (42.0%)	113 (52.1%)	0.67	0.46-0.97		$\overline{}$
TT	37 (16.4%)	44 (20.3%)	0.77	0.47-1.25		_
G	283 (62.6%)	233 (53.7%)	1.44	1.10-1.89	7.25	(0.00
T	169 (37.4%)	201 (46.3%)	0.69	0.53-0.81		$\overline{}$

РНФ 14-35-00023 «Лаборатория фармакогенетических исследований персонализированной терапии психических и нейродегенеративных расстройств» (2014–2016).

РФФИ 17-29-06035 офи_м «Новые подходы к фармакогенетике антипсихотик-индуцированной гиперпролактинемии у больных шизофренией» (2017–2020).

Ivanova, S. A., Osmanova, D. Z., Freidin, M. B., Fedorenko, O. Y., Boiko, A. S., Pozhidaev, I. V., Semke, A. V., Bokhan, N. A., Agarkov, A. A., Wilffert, B., Loonen A. J. Identification of 5-hydroxytryptamine receptor gene polymorphisms modulating hyperprolactinemia in antipsychotic drug-treated schizophrenic patients // World J. Biol. Psychiatry.— 2017 Apr;18(3):239-246. http:// dx.doi.org/10.1080/15622975.2016.1224926. (IF 4.159)

Ivanova SA, Osmanova DZ, Boiko AS, Pozhidaev IV, Freidin MB, Fedorenko OY, Semke AV, Bokhan NA, Kornetova EG, Rakhmazova LD, Wilffert B, Loonen AJ. Prolactin gene polymorphism (-1149 G/T) is associated with hyperprolactinemia in patients with schizophrenia treated with antipsychotics. Schizophr Res. 2017 Apr;182:110-114. doi: 10.1016/j.schres.2016.10.029 (IF 4.453)

Успехи современной персонализированной медицины

MPS и персональная геномика как перспективная технологическая база персонализированной медицины

Идентификация большей части генов и точная диагностика моногенных болезней

Прецизонная терапия некоторых орфанных заболеваний

Идентификация большей части «упущенной наследуемости» при МФЗ, разработка геномных и омиксных подходов для персонализации ДТП

Персонализация терапии некоторых многофакторных болезней

Геномное редактирование как потенциальный инструмент таргетной терапии

Современная персонализированная медицина – результат интеграция или конвергенция (сближения) технологий, идей, открытий основанных на достижениях медицинской генетики и геномики человека

Генетика и медицина

Современная медицинская генетика и геномика делают наукой персонализированную медицину