

Водяной пар в радиационном балансе атмосферы. Континуальное поглощение водяного пара.

Игорь Пташник

д.ф.-м.н, директор Института оптики атмосферы СО РАН

Селективное и континуальное поглощение водяного пара

Радиационный баланс Земли

Trenberth K., Fasullo J. (Surv. Geophus., 2011)

$$\Delta T$$
 [град] = $\lambda \cdot \Delta F$ [Вт/м²]

 ΔT – изменение температуры

 λ – климатическая чувствительность ΔF – радиационный форсинг

- 1) H₂O сильный парниковый газ.
- 2) Содержание H₂O в атмосфере растет с *Т* поверхности → положительная обратная связь. В итоге, водяной пар удваивает радиационный форсинг любого другого воздействия. Например: 2 х CO₂ → 3.7 Bт/м2 → Δ*T* ≈ 1.2 C (без обр. связи) и Δ*T* ≈ 3 C (с обр. связью)

Селективное и континуальное поглощение водяного пара

Кроме селективного поглощения (линий) H₂O существует также малоизученное слабоселективное континуальное поглощение излучения водяным паром (модель - - -). Определяет поглощение в окнах прозрачности атмосферы.

Грант NERC, 2001-2004: Континуальное поглощение – это самая неопределённая компонента поглощения излучения водяным паром в атмосфере.

Континуальное поглощение водяного пара

- Погрешность в величине континуального поглощения достигала 100% в некоторых спектральных участках (особенно, в ближнем ИК).
- Значительно влияет на энергетический баланс атмосферы, уменьшая количество уходящего теплового излучения (OLR) на 25-30%.

Фундаментальный аспект

 Природа континуума является предметом горячих дискуссий на протяжении уже 50 лет: дальние крылья линий мономера воды или димеры воды?

Континуальное поглощение. Предыстория.

- 1918, *Hettner* Континуальное поглощение было обнаружено в области "окна" прозрачности атмосферы 8-14 μm.
- 1938, *Elsasser* Объяснено суммарным вкладом дальних крыльев сильных линий полос поглощения H₂O

 1966, Викторова & Жевакин (микроволновой); 1967, Penner & Varanasi (средний ИК) – Основной вклад в континуум водяного пара обусловлен не мономерами, а димерами воды (H₂O)₂:

Димеры воды или дальние крылья линий мономера?

(более 50 лет...)

Викторова & Жевакин, Докл. Академии наук СССР (1966) => microwave Penner & Varanasi, J. Quant. Spectrosc. Radiat. Transf. (1967) => middle-IR

Димеры воды

- Bignell, QJ RMS (1963, 1970)
- Burch, Semi-Annual Rep. ARPA (1970)
- Penner, Varanasi & Chou JQSRT (1967, 1968)
- Roberts, Selby, Biberman, Appl. Opt. (1976)
- Aref'ev, Dianov-Klokov, Optics & spectrosc. (1977)
- Suck, Kassner and Yamaguchi, Appl. Opt. (1979)
- Suck, Wetmore, Chen, Kassner, Appl. Opt. (1982)
- Vigasin, Izv. Akad. Nauk SSSR, FAO (1983)
- Vigasin, Chlenova, Izv. Akad. Nauk SSSR (1984)
- Hinderling, Sigrist, Kneubuhl, Infrared Physics (1987)
- Devir, Neumann, Lipson, Oppenheim, Opt.Eng.(1994)
- Vigasin, QJSRT (2000), Kluwer Acad. Publishers (2003)
- Ptashnik, Smith, Shine, Newnham, QJ RMS (2004)
- Daniel, Solomon, Kjaergaard, Schofield, GRL (2004)
- Cormier, Hodes, Drummond, J. Chem. Phys. (2005)
- Scribano and Leforestier, J. Chem. Phys. (2007)
- Vigasin, Jin, Ikawa, Molec. Phys. (2008)
- Paynter D, Ptashnik I, Shine K, Smith, Geoph. Res. Lett. (2008)
- Ptashnik, Vigasin, Shine, JQSRT (2011)
- Ptashnik, Shine, McPheat, Smith, Williams, J. Geoph. Res. (2011)
- Tretyakov, Serov, Koshelev et al. Phys. Rev. Lett. (2013)
-

Дальние крылья линий

- Elsasser, Phys. Rev. (1938)
- Nesmelova, Tvorogov, Fomin, Nauka (1977)
- Nesmelova, Rodimova, Tvorogov, Nauka (1986)
- Thomas & Nordstrom, JQSRT (1982).
- Rosenkrantz, J. Chem. Phys. (1985)
- Rosenkrantz, J. Chem. Phys. (1987);
- Clough, Kneizys, Davies, Atmos. Res. (1989)
- Ma & Tipping, J. Chem. Phys. (1992)
- Tipping & Ma, Atmos. research (1995)
- Mlawer, Clough, Brown, Tobin, ARM (1996)
- Ma & Tipping, J. Chem. Phys. (1999)
- Ma & Tipping, J. Chem. Phys. (2002)
- Cormier, Ciurylo, Drummond, J.Chem.Phys. (2002)
- Ma & Tipping, JQSRT (2003)

.....

- Mlawer, Tobin, Clough, JQSRT (2004)
- Ma, Tipping & Leforestier, J. Chem. Phys. (2008)

Сегодня вклад димеров воды в континуум не оспаривается...

Континуум водяного пара и димеры (NERC, UK, 2001-2004)

Vaida et al. (QJRMS, 2001): димеры Ptashnik et al. (QJ RMS, 2004): димеры и континуум Kjaergaard et al. (JPC, 2003)

1) Поразительное качественное спектральное сходство модели континуума и димеров.

2) Доказательство вклада димеров воды в континуум следует искать не в окнах прозрачности, а в многочисленных микроокнах в полосах поглощения водяного пара.

Димеры воды в полосе 1.9 мкм

I. Ptashnik, D. Newnham, K. Shine, K. Smith, Q.J. Royal Met.Soc. (2004)

Димеры воды в полосе 2.7 мкм

Модельные спектры димеров воды для 15 мбар чистого водяного пара

Измерения континуального поглощения водяного пара в ближней ИК области спектра в лабораторных условиях.

Измерения континуума Burch (1985) в полосе поглощения 2.7 мкм !

Измерения континуума воды Burch в полосе 2.7 мкм

AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE HANSCOM AFB, MASSACHUSETTS 01731

Burch ничего не знал о спектре димеров в 1985...

experimental transmittance values to the monochromatic values

calculated from line parameters and convolved with an

instrument slit function (see Eqs. 14, 15). The corrected

Water dimers: an "unknown" experiment

I.V. Ptashnik

Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences, Tomsk

Received March 9, 2005

It is shown that reliable evidences of significant contribution of water dimer absorption to the water vapor continuum in the spectral range of $3000-4200 \text{ cm}^{-1}$ can be revealed from well-known Burch's measurements.

Интенсивности димеров: VPT2 расчеты (*Kjaergaard et al.,* JPC-2008) + эксперименты по димерам воды в Не микрокаплях (*Kyuanov et al.,* JCP-2010).

Ptashnik I, Evidence for the contribution of water dimers to the near-IR water vapour self-continuum // JQSRT, 2008

Консорциум CAVIAR (Великобритания, 2007-2011 гг.)

SMPCS Mathematics and Statistics Meteorology

Caviar Home

Menu

Caviar consortium

Publications

Data

- Internal pages
- About us

See also

- Research in the Department of Meteorology
- The Radiation group

Contacts

- Emails: k.p.shine@reading.ac.uk i.v.ptashnik@rdg.ac.uk
- Telephone:
 +44 (0) 118 378 8405

CAVIAR (Continuum Absorption at Visible and Infrared wavelengths and its Atmospheric Relevance) was a <u>NERC</u> (80%) and <u>EPSRC</u> (20%) Consortium Grant (Oct. 2006 - June 2011), involving the following UK universities and institutions:

- Imperial College
- <u>Met Office</u>

CAVIAR

- <u>National Physical Laboratory</u>
- <u>Rutherford Appleton Laboratory</u>
- University College London
- University of Cambridge
- <u>University of Leicester</u>
- <u>University of Reading</u>

The project was led by <u>Prof. Keith P. Shine</u> at the University of Reading; scientific co-ordination was by <u>DrSc. Igor V. Ptashnik</u> who has now returned to the <u>VE Zuev Institute of Atmospheric Optics</u> in Tomsk, Russia. Although the formal CAVIAR project has ended, the publications of our CAVIAR-related work are updated regularly, and the main CAVIAR continuum data is also available.

CAVIAR addressed the component of the absorption of electromagnetic radiation by water vapour which varies relatively slowly with wavelength, known as the <u>water vapour continuum</u>.

The continuum has a significant impact on fluxes of infrared radiation and atmospheric cooling rates, with consequences for understanding the effect of water vapour on both the present-day climate, in climate change, and in remote sensing of the atmosp here.

The Special Issue of the Royal Society's meeting "Water in the Gas Phase" (13-14 June 2011) which includes many continuumrelated papers (including several from CAVIAR) can be found here: <u>Special Issue of Phil.Trans.Roy.Soc.A</u>

FTS измерения континуума в RAL и в ИОА СО РАН (2007-н.в.)

Широкомасштабные измерения континуального поглощения водяного пара в ближнем ИК и видимом диапазоне, в лабораторных и полевых условиях. Позднее измерения инициированы во Франции и в России (ИОА СО РАН, ИПФ РАН).

САVIAR (2007-2011, UK), РФФИ (2013-2014), РНФ (2016-2018)

0.8 м, 6 м и 30 м многоходовые "ячейки": до 1100 м оптическая длина пути, давление водяного пара до 5 atm, температуры 0-200 °C; спектрометр Bruker IFS 125HR

Континуум водяного пара и димеры (1.3 – 6 мкм)

Доминирующий вклад димеров воды в континуум водяного пара в полосах поглощения.

15

Бимолекулярное поглощение. Статистическое разделение молекулярных пар в фазовом пространстве

Storgyn & Hirschfelder (1959), Hill (1956) A. Vigasin (1991-2003) (polyatomic molecules)

Бимолекулярное поглощение (БП) можно формально разделить на три части: связанные (стабильные) димеры; квазисвязанные (метастабильные) димеры и свободные пары ("single approach" collisions).

A. Vigasin (Kluwer, 2003):

H₂O-H₂O (Vigasin, Infr.Phys, 1991; Kluwer, 2003; Epifanov & Vigasin, 1997):

- Роль свободных пар практически незначительна при комнатных температурах по сравнению со связанными and квазисвязанными состояниями.
- Доля связанных и квазисвязанных димеров должна быть сравнима при комнатных температурах (Epifanov & Vigasin, 1996; Schenter et al., 2003)

Модель димеров для континуума в полосах поглощения

 $C_s(v)$ – экспериментальное сечение поглощения континуума [см²молек⁻¹атм⁻¹]

 $K_{eq}^{bound, quasib.}$ – константа димеризации связанных и квазисвязанных димеров [атм⁻¹]

 S^{bound} – интенсивности полос связанных [см/молек] (*Kjaergaard et al.,* J.Phys.Chem. 2008)

 $S^{quasib.}$ – интенсивности полос квазисвязанных димеров ($\approx 2 \times S_{monomer}$ из HITRAN-2012)

 f_{Voigt} – контур Фойгта

Ptashnik, Shine, Vigasin, Water vapour self-continuum and water dimers. 1. Analysis of recent work // JQSRT (2011)

Измерения при пониженных температурах (2016-2017)

Ptashnik, Klimeshina, Petrova, Solodov (Jr.), Solodov, J. Atmos. Ocean. Opt. (2016)

- Bruker IFS 125HR, диапазон 1000 5000 см⁻¹, 0.01 см⁻¹ Спектрометр:
 - Приёмник:

Многоходовая кювета: 20-40 m, T = -9 to 15 °C (термостат Termeks Crio BT-01) 2 термометра LT-300, MKS Baratron МТС, охлаждение жидким азотом

fitting fitting 2.S_{monomer} $\gamma_{HWHM} = 10 \& 30 \text{ cm}^{-1}$ $C_s(v) = \left(K_{eq}^{\text{bound}}(T) \times S^{\text{bound}} + K_{eq}^{\text{quasib.}}(T) \times S^{\text{quasib.}}\right) \times f_{\text{Voigt}}(v - v_o, \gamma)$

Вклад связанных и квазисвязанных димеров в полосах поглощения 150 см⁻¹ и 8800 и 10600 см⁻¹ (2018-2020)

Odintsova, Tretyakov, Simonova, Ptashnik et al., J. Molec. Struct. (2020)

Континуум водяного пара в окнах прозрачности

Ptashnik, McPheat, Shine, Smith, Williams, J. Geophys. Res. (2011); Phil. Trans. R.Met.Soc. (2012)

Континуальное поглощение водяного пара в окнах прозрачности атмосферы ближнего ИК диапазона при повышенных температурах до порядка величины превышает предсказание модели МТ_СКD, которая используется в современных климатических и радиационных моделях. (Результат вошел научные достижения РАН за 2011 г)

Континуум водяного пара в окнах прозрачности: радиационный эффект

Ptashnik, McPheat, Shine, Smith, Williams, J. Geophys. Res. (2011); Phil. Trans. R. Met. Soc. (2012)

(а) Спектр нисходящего солнечного излучения на поверхности Земли и (пунктиром) экстра поглощение, обусловленное модификацией континуума водяного пара в окнах прозрачности.

- (b) Скорость разогрева атмосферы вследствие континуума воды и его поправки.
- (с) Широтная зависимость доп. поглощения вследствие поправки континуума воды.

Quarterly Journal of the Royal Meteorological Society

Q. J. R. Meteorol. Soc. 141: 727-738, April 2015 A DOI:10.1002/qj.2385

Global radiative and climate effect of the water vapour continuum at visible and near-infrared wavelengths

Gaby Rädel,^{a,b} Keith P. Shine^a* and Igor V. Ptashnik^{a,c}

^aDepartment of Meteorology, University of Reading, UK ^bMax Planck Institute for Meteorology, Hamburg, Germany ^cV.E. Zuev Institute of Atmospheric Optics, Tomsk, Russia

Ожидаемое среднегодовое изменение потока приземной солнечной радиации через 50 лет после удвоения СО₂, согласно модели континуума CAVIAR.

Основные публикации по теме за последние 14 лет (в Q1)

- 1. Ptashnik I, Evaluation of suitable spectral intervals for near-IR // J. Quantit. Spectr. and Radiative Transfer, v. 108 (2008) ИΦ=2.9
- 2. Paynter D, Ptashnik I, Shine K, Smith K. Pure water vapor continuum measurements between 3100 and 4400 cm¹: Evidence for water dimer absorption in near atmospheric conditions // Geophys. Res. Lett.. V. 34 (2008) MΦ=4.6.
- 3. Ptashnik I. Evidence for the contribution of water dimers .. // J. Quantit. Spectr. and Radiative Transfer, v. 109 (2009).
- 4. Paynter D, Ptashnik I, Shine K et al. Laboratory measurements of the water vapor continuum... // J. Geophys. Res. (2009) ΜΦ=3.42.
- 5. Ptashnik I, Smith K., Water vapour line intensities...// J. Quantit. Spectr. and Radiative Transfer, v. 111 (2010).
- 6. Ptashnik I., Shine K., McPheat R., Smith K., Williams R. // J. Geophys. Res., v.116 (2011) ΜΦ=3.42.
- 7. Tallis L., Ptashnik I., Shine K., Coleman M., Gardiner T. // J. Quantit. Spectr. and Radiative Transfer, v.112(14) (2011).
- 8. Ptashnik I, Shine K, Vigasin A. Water vapour self-continuum and water dimers... // J. Quantit. Spectr. and Radiat. Transfer (2011).
- 9. Shine K, Ptashnik I, Rädel G. The water vapour continuum: History and recent developments // Survey in Geophys. (2012) ΜΦ=3.5.
- 10. Newman S., Taylor J., Ptashnik I., et al. The Joint Airborne IASI Validation Experiment... // JQSRT, v.113 (2012) ΜΦ=2.9.
- 11. Newman S., Green P., Ptashnik I., et al. Airborne and satellite remote sensing of the mid-infrared water vapour continuum... // Philosophical Transactions (Series A), v.370 (2012) ΜΦ=3.1.
- 12. Gardiner T., Coleman M., Browning H., Tallis L., Ptashnik I., Shine K. Absolute high spectral resolution measurements of surface solar radiation for detection of water vapour continuum absorption // Philosophical Transactions, v.370 (2012).
- 13. Ptashnik I., Shine K., McPheat R., Smith K., Gary Williams R. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements // Philosophical Transactions (Series A). v. 370 (2012) ΜΦ=3.1.
- 14. Menang K., Ptashnik I., Shine K et al. A high-resolution near-infrared extraterrestrial solar spectrum derived from ground-based Fourier transform spectrometer measurements // J. Geophys. Res, v.118(11) (2013) MΦ=3.42.
- 15. Ptashnik I., Petrova T., Ponomarev Y., Solodov A.A., Solodov A.M., Shine K.P. Near-infrared water vapour self-continuum at close to room temperature // J. Quantit. Spectr. and Radiative Transfer, v.120. p 23-35 (2013) MΦ=2.9.
- 16. Пташник И. Континуальное поглощение водяного пара краткая предыстория // Оптика атмос. и океана (2015).
- 17. Ptashnik I, Klimeshina T, Petrova T, Solodov A.A., Solodov A.M. Water vapour continuum absorption at decreased temperatures within 2.7 and 6.25 mcr bands // **Atmospheric and Oceanic Optics**, v. 28 (**2015**) *N*Φ=1.51.
- 18. Rädel G, Shine K, Ptashnik I. Global radiative and climate effect of the water vapour continuum at visible and near-infrared wavelengths // Quarterly Journal of the Royal Meteorological Society, v.141 (2015) ΜΦ=3.25.
- 19. Ptashnik I, McPheat R, Polyansky O, Shine K, Smith K // J. Quant. Spectr. and Radiative Transfer, v.177 (2016) MΦ=2.9.
- 20. Shine K, Campargue A, Mondelain D, Ptashnik I. et al. The water vapour continuum in near-infrared windows Current understanding and prospects for its inclusion in spectroscopic databases // J. Molecular Spectr. v.327 (2016) MΦ=2.22.
- 21. Ptashnik I, Klimeshina T, Solodov A, Vigasin A. Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm band // **J. Quant. Spectr. and Radiative Transfer,** V. 228 **(2019)** MΦ=2.9.
- 22. Zhuravleva T, Nasrtdinov I, Chesnokova T, Ptashnik I. Monte-Carlo simulation of thermal radiative transfer in spatially inhomogeneous clouds taking into account the atmospheric sphericity // J. Quant. Spectr. and Radiative Transfer, V. 236 (2019) MΦ=2.9
- Odintsova T, Tretyakov M., Simonova A., Ptashnik I., Pirali O., Campargue A. Measurement and temperature dependence of the water vapor self-continuum between 70 and 700 cm⁻¹ // J. Molec. Structure. V. 1210 (2021) μΦ= 3.2
- 24. Simonova A., Ptashnik I., Elsey J., McPheat R., Shine K., Smith K. Water vapour self-continuum in near-visible IR absorption bands: Measurements and semiempirical model of water dimer absorption // **J. Quant. Spectr. and Radiat. Transfer,** V. 277 (2022) MΦ=2.

Заключение

- С 2003 г. инициирована серия широкомасштабных международных исследований континуального поглощения излучения водяным паром в атмосфере.
- На основе экспериментальных и численных исследований впервые показано, что природа континуального поглощения в полосах водяного пара в значительной степени обусловлена димерами воды.
- Экспериментально показано, что континуальное поглощение водяным паром в окнах прозрачности атмосферы при повышенных температурах может в несколько раз превышать значения, предсказываемые моделью MT_CKD (включёно в научные достижения PAH за 2011 г).
- Сделаны численные оценки радиационного вклада «обновленного» континуума в атмосфере Земли.
- Создана малопараметрическая полуэмпирическая модель континуального поглощения водяного пара в полосах поглощения.

При активном участии/обсуждении:

Keith P. Shine (University of Reading, UK) Андрей А. Вигасин (ИФА РАН, Москва) Михаил Ю. Третьяков (ИПФ РАН, Нижний Новгород) Kevin Smith & Robert Mc Pheat (Rutherford Appleton Lab., UK) Солодов А.М. и Солодов А.А. (ИОА СО РАН, Томск)

Спасибо за внимание!

Восстановление континуального поглощение H₂O из спектров высокого разрешения

Стратегические направления научной деятельности

Фундаментальные, поисковые и прикладные исследования по следующим направлениям.

Проблемы оптики и физики атмосферы, включая:

- спектроскопия атмосферных газов;
- дистанционное зондирование атмосферы;
- распространение оптического излучения в атмосфере;
- процессы, определяющих оптическое состояние атмосферы;
- оптико-электронные системы и технологии исследования окружающей среды.

Физические процессы в атмосфере и на поверхности Земли, механизмы формирования и изменения климата, в том числе:

- оптически значимые составляющие атмосферы;
- процессы, определяющие радиационный режим и климат Земли.

Состав: 530 человек; 217 научных сотр.; 43 д.ф.-м.н.; 126 к.ф.-м.н.