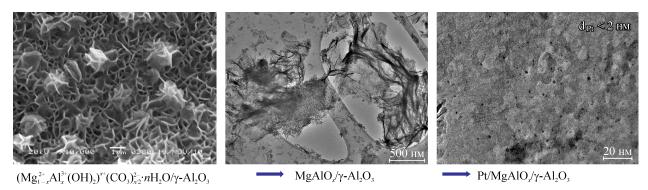
Приоритетное направление V.38. Научные основы экологически безопасных и ресурсосберегающих химико-технологических процессов

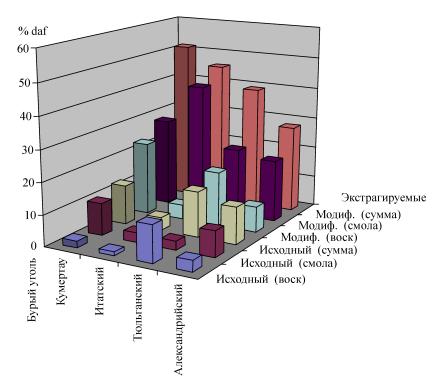
Программа V.38.1. Развитие научных основ адсорбционных, мембранных и каталитических процессов переработки каустобиолитов для получения моторных топлив и продуктов нефтехимии. Разработка новых химико-технологических процессов и аппаратов переработки минерального сырья (координатор член-корр. РАН В. А. Лихолобов)

В Институте проблем переработки углеводородов разработаны основы новой одностадийной технологии переработки растительных масел в углеводородные компоненты реактивно-дизельных топлив, отличающихся экологической чистотой (отсутствие сернистых соединений, ароматических и непредельных углеводородов) и температурой застывания до -55 °C. Проведена оптимизация условий процесса гидродеоксигенации растительного масла на катализаторе Pt/B₂O₃—Al₂O₃. Получена оценка стабильности работы катализатора (см. таблицу). Показана возможность стабильной работы катализатора с получением компонента дизельного топлива при выходе 66—72 мас.%, включающего преимущественно изоалканы. Условиями такого протекания гидродеоксигена-

Углеводородный состав дизельной фракции в зависимости от времени переработки растительных масел в углеводородные компоненты реактивно-дизельных топлив


Компонент дизельной фракции	Время работы катализатора, ч			
	5	10	15	20
	Содержание компонента, отн.%			
н-С ₁₂ Н ₂₆	1,1	1,3	0,8	0,7
н- $C_{13}H_{28}$	0,8	0,9	0,6	0,6
$H-C_{14}H_{30}$	0,6	0,6	0,5	0,5
$H-C_{15}H_{32}$	2,2	2,7	2,8	2,8
$H-C_{16}H_{34}$	3,8	3,8	3,5	3,6
$H-C_{17}H_{36}$	7,3	11,0	13,7	13,8
$H-C_{18}H_{38}$	1,2	2,1	3,5	3,7
$H-C_{19}H_{40}$	0,0	0,0	0,1	0,1
н- $C_{20}H_{42}$	0,0	0,0	0,0	0,0
Сумма	17,0	22,3	25,6	25,7
н-алканов				
Сумма	83,0	77,7	74,4	74,3
изоалканов				

ции являются: температура 400 °C, массовая скорость подачи масла 1,0 ч $^{-1}$ и давление 4 МПа. Цетановое число полученных компонентов дизельного топлива может достигать 70 пунктов.


В этом же Институте синтезирован принципиально новый основный носитель для нанесенных платиновых катализаторов дегидрирования углеводородов. Носитель получен путем модифицирования оксида алюминия посредством синтеза на его поверхности смешанного алюмомагниевого оксида (рис. 29). В качестве предшественника данного смешанного оксида использован слоистый алюмомагниевый гидроксид типа гидротальцита, полученный взаимодействием гидроксидов магния и алюминия в поровом пространстве носителя у-Al₂O₃. Данный подход обеспечивает локальное формирование новой фазы на поверхности исходного носителя при сохранении его текстурных параметров.

Каталитические свойства полученных нанесенных катализаторов исследованы в реакции дегидрирования пропана. Показано, что новый катализатор дегидрирования отличается большей стабильностью в сравнении с известными аналогами в результате малого вклада реакций образования тяжелых продуктов реакции.

В Институте углехимии и химического материаловедения селективным алкилированием ископаемых углей, совмещенным с экстракцией, избирательно увеличен выход битумов и ценных продуктов — спиртов, карбоновых кислот, длинноцепочечных сложных эфиров нормального строения, стероидных и терпеновых структур. Разрабатываемые методы позволяют уменьшить число стадий получения ценных химических продуктов из твердых горючих ископаемых, на 20—40 % увеличить выход целевых продуктов и повысить качество получаемых материалов (рис. 30). Технологи-

Рис. 29. Синтез основного носителя $MgAlO_x/\gamma$ - Al_2O_3 для нанесенных платиновых катализаторов дегидрирования углеводородов.

Рис. 30. Выход экстрагируемых продуктов из исходных и модифицированных углей (daf — показатель в пересчете на сухую беззольную массу).

ческие перспективы имеют восковые и смоляные фракции в качестве сырья для получения сложных эфиров, промышленных ПАВ, флотореагентов, биологически активных субстан-

ций. Фенольные фракции — сырье для получения высокомолекулярных продуктов, биологически активных субстанций.