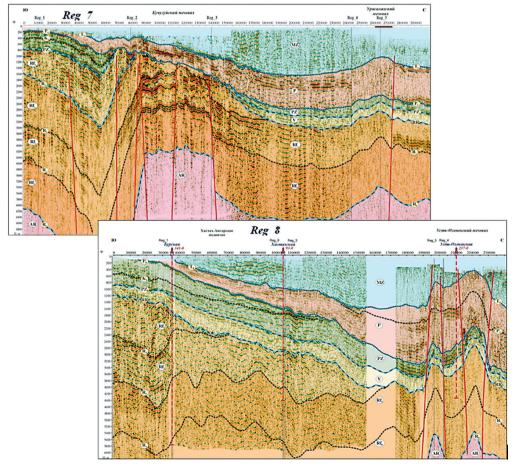
Приоритетное направление VIII.73.


Геология месторождений углеводородного сырья, фундаментальные проблемы геологии и геохимии нефти и газа, научные основы формирования сырьевой базы традиционных и нетрадиционных источников углеводородного сырья

Программа VIII.73.1. Проблемы региональной геологии, седиментологии, органической геохимии и нефтегазоносности осадочных бассейнов Сибири и акватории Северного Ледовитого океана (координаторы член-корр. РАН В. А. Конторович, член-корр. РАН А. Ф. Сафронов)

Учеными Института нефтегазовой геологии и геофизики им. А. А. Трофимука построена сейсмогеологическая модель Анабаро-Ленской зоны (север Республики Саха (Якутия)), отвечающая современной стадии изученности региона (рис. 38). Выполнена стратификация и уточнена схема корреляции неопротерозойско-палеозойских сейсмических горизонтов. Выделены четыре сейсмогеологических комплекса в вендско-фанерозойской части разреза — вендский, кембрийский, среднепалеозойский и мезозойский; определены их мощности и зоны распространения. Выполнен анализ геологического

строения рифейского сейсмогеологического мегакомплекса, мощность которого в депрессионных зонах превышает 10 км. Сделан вывод о близком структурно-тектоническом строении южных районов Анабаро-Ленского региона с зоной сочленения Байкитской антеклизы и Курейской синеклизы. Определены типы основных нефтегазоперспективных объектов Анабаро-Ленской зоны в отложениях перми, кембрия, венда и рифея.

Учеными этого же Института с учетом результатов оценки прогнозных ресурсов в смежных районах Западной Сибири, мощности неф-

Рис. 38. Глубинные сейсмогеологические разрезы по профилям Reg 7 и Reg 8.

тегазоносных комплексов, распространения проницаемых комплексов, качества флюидоупоров, оценки масштабов генерации УВ в основных нефтематеринских толщах, распределения зон инфильтрации поверхностных вод, изменения средней пористости и доли эффективных коллекторов с глубиной в юрских и меловых отложениях для наиболее перспективной западной части Енисей-Хатангского регионального прогиба построены карты плотностей начальных геологических ресурсов свободного газа и нефти (рис. 39).

В этом же Институте проведено детальное седиментологическое изучение отложений

парфеновского горизонта центральной части Ангаро-Ленской ступени. Выделены обстановки седиментации от аллювиальных равнин до средне-глубокого шельфа (рис. 40). Построены детальные палеогеографические схемы и показано, что проградация песчаного материала происходила как с преимущественно западного, так и с восточного направлений. Выяснено, что фильтрационно-емкостные свойства контролировались не только гранулометрией и обстановками седиментации, но и в значительной степени определялись первичным вещественным составом и постседиментационными процессами.

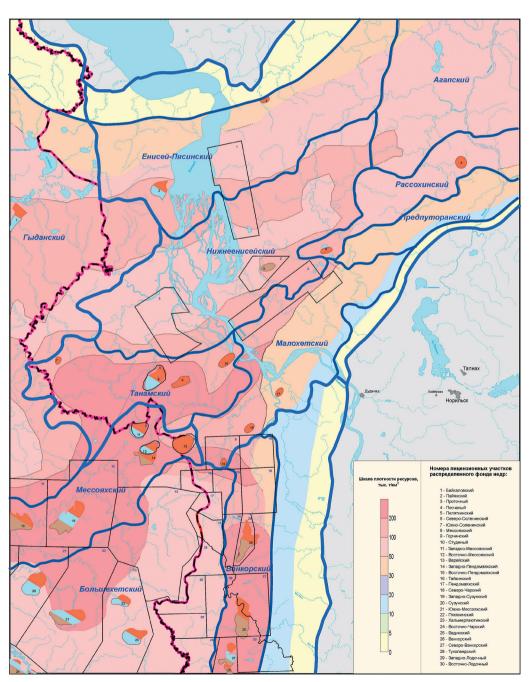


Рис. 39. Плотность начальных геологических ресурсов углеводородов в юрско-меловых комплексах.

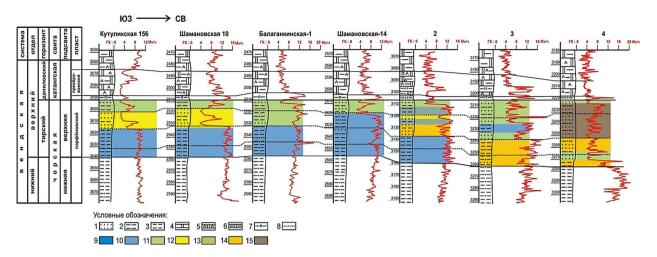


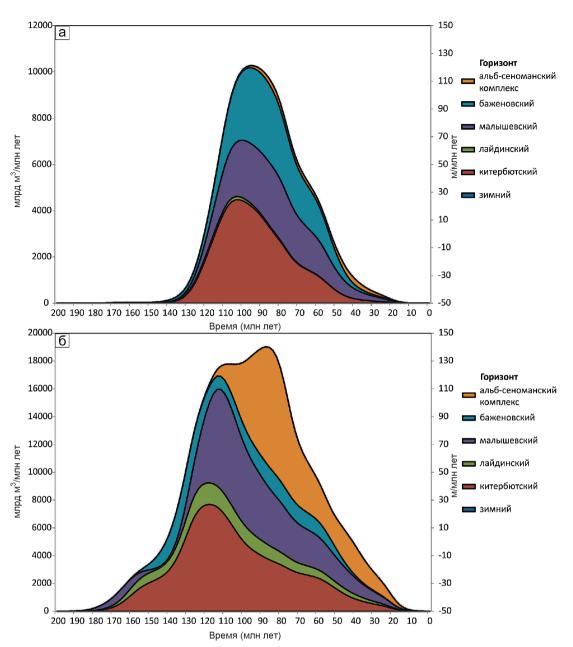
Рис. 40. Распределение обстановок седиментации на профиле ЮЗ-СВ (юго-запад Сибирской платформы).

1 – песчаники, 2 – алевролиты, 3 – аргиллиты, 4 – доломиты, 5 – доломиты глинистые, 6 – доломиты ангидритистые, 7 – глинисто-доломитовые породы, 8 – границы этапов седиментации, 9 – средний—глубокий шельф, 10 – мелкий—средний шельф, 11 – прибрежная равнина с преобладанием русловых отложений при активном влиянии приливно-отливных течений (приливно-отливная равнина), 12 – аллювиальная равнина с преобладанием русловых отложений, 13 – аллювиальная равнина с преобладанием пойменных отложений, 14 – бары, переработанные приливно-отливными протоками, 15 – приустьевые бары.

МАГЭ Н.М. Иванова и р., 1989, Т.А. Кириллова, 1991 С.Б. Секретов, 1993 С.Б. Секретов, 1993 С.Б. Секретов, 1993 С.Б. Секретов, 1995 С.Б. Сек	K	Положение отражающих горизонтов в разрезе чехла шельфа моря Лаптевых												Материковое обрамление		
19-22	атиграфическ шкала	МАГЭ Н.М. Иванова и др., 1989, Т.А. Кириллова, 1991		НИИМОРГЕОФИЗИКА		ВНИИОкеангеология Б.И. Ким, 1994-2004		С.С. Драчев 1994	K.Hinz et al., 1997; D. Franke	1999 (по материалам МАГЭ, ЛАРГЭ,	опорных горизонтов ИНГГ СО РАН	Пластовые скорости определенные вертикальным сейсмопрофилированием		материкового обрамления и акватории моря Лаптевых		
1,9-2,2	Ę.	Центр. часть	Восточная часть	Ю-3	Зап.и Цен.части Вост.часть		Зап.и центр.части Вост.часть		часть	et al., 2001	дмні)					часть
VI	Q E	2,1-2,2 JI 2,2-2,3 1 2,8-3,0 III 3,6-3,8 III 4,1-4,3 III 5,0' V	2,1-2,2 ——Л	2,3-2,5 ~ II 4,0 ~ III 4,4-4,6 ~ IV 4,4-4,5 ~ V	1,9-2,0 I	2,1-2,15 JI ~~~ 2,45 II ~~~ 2,113,49 III ~~ 3,4-3,5 III o ~~ 4,2-4,6 III ~~ 5,2-5,5 IV ~~			0 ~~ 0 ~~ 4 ~~ 3 ~~ 2 ~~ 1 ~~	1,9-2,2 Ls3 3,2 Ls2 4,1-4,5 4,7-5,2 Ls1	~ЛVII ~ ~ЛVI ~ ~ЛV ~ ~ЛV	Др., 2013 4,0 ↓ 1,57 Pe PZ RR	4,18 км/с 3,54 км/с 4,23 км/с Пермь 5,79 км/с 6,36 км/с 4,36 км/с	4,48 km/c 3,64 km/c 3,96 km/c 4,23 km/c 3,33 km/c 4,78 km/c 5,40 km/c 4,78 km/c 6,10 km/c		часть
~II4).B.1.S3 ~ 1 ~ III. 2 3 5.5 4	PR, ²	VI—		~VI	~~VI~~~			1				R _o		.,00 каре	R,	

Рис. 41. Варианты стратиграфической привязки отражающих сейсмических горизонтов в осадочном чехле шельфа моря Лаптевых.

^{1 –} отражающие горизонты и их индексы (в скобках указаны индексы горизонтов на профилях ЛАРГЕ и BGR); 2 – отражающие горизонты, локально распространенные; 3 – фундамент; 4 – средняя пластовая скорость.


Учеными Института проблем нефти и газа на основе сравнительного анализа положения стратифицированных отражающих горизонтов в осадочном чехле берегового обрамления моря Лаптевых и их скоростных характеристик и распространения, положения в разрезе и скоростных характеристик в осадочном чехле шельфа моря Лаптевых предложены варианты стратиграфической привязки отражающих сейсмических горизонтов в осадочном чехле шельфа моря Лаптевых (рис. 41). Сделан вывод, что более адекватным представляется вари-

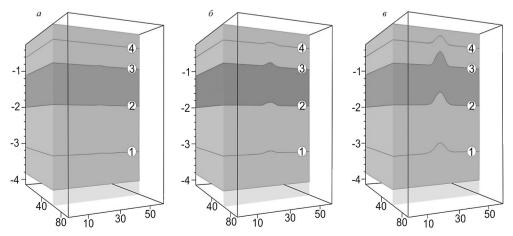
ант стратификации отражающих горизонтов на шельфе моря Лаптевых с выделением следующих опорных горизонтов: подошва неогеновых кровля палеогеновых отложений N_0 , горизонт в нижнем палеогене P, подошва верхнемеловых кровля нижнемеловых отложений K, подошва триасовых отложений (глинистые разности) T_0 , подошва пермских отложений (песчаники) P_0 , подошва кембрия—кровля венда (карбонаты—терригенные породы) PZ_0 , кровля рифея RR, подошва рифея (фундамент) R_0 .

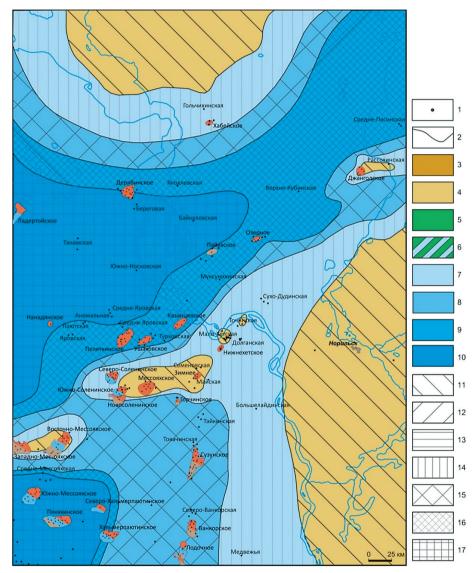
Программа VIII.73.2. Основы теории нафтидогенеза, история формирования и эволюция нефтегазовых систем в докембрии и фанерозое (координаторы акад. А. Э. Конторович, докт. геол.-мин. наук Л. М. Бурштейн)

Учеными Института нефтегазовой геологии и геофизики им. А. А. Трофимука на основе обобщения и интерпретации геолого-геофизической информации построена 4D (3D + t) численная модель геологического строения и истории развития арктических районов Западно-Сибирской нефтегазоносной провинции, включая акваторию южной части Карского моря, и выполнено моделирование процессов нафтидогенеза в Южно-Карском очаге генерации углеводородов (УВ) Западно-Сибирского осадочного бассейна. По сравнению с традиционно выполняемыми вычислительными экспериментами этого типа учтены раннекатагенная генерация углеводородов и их диссипация в период до литификации региональных флюидо-Рассмотрены палеогеографические обстановки накопления органического вещества, его биологическая природа (генетические типы) в отдельных осадочных комплексах, история погружения, геотермическая история каждого комплекса. Построены карты времени вхождения отдельных свит в главную зону нефтеобразования и выхода из нее, карты масштабов генерации органическим веществом каждой нефтегазопроизводящей свиты жидких и газообразных углеводородов. Определено изменение во времени интенсивности генерации жидких и газообразных углеводородов отдельными свитами и в осадочном чехле в целом в Южно-Карском очаге нефтегазообразования как в единой крупной нефтегазогенерационной системе (рис. 42). Согласно выполненной оценке, основными источниками генерации нефти (жидких углеводородов и гетероциклических соединений) в Южно-Карском очаге были, в порядке убывания значимости, верхнеюрский (баженовскийяновстанский, генерировал 493 млрд т, 61,2 %), нижнеюрский (китербютский - 172 млрд т, %) и среднеюрский (малышевский, 140 млрдт, 17,4%) комплексы. Основными источниками генерации углеводородных газов в очаге были, в порядке убывания значимости, нижнеюрский комплекс (генерировал 402 трлн м³, 32,7 %), среднеюрский (387 трлн м³, 31,4 %), верхнеюрский (275 трлн м³, 22,3 %), апт-альбсеноманский (167 трлн м³, 13,6 %). Результаты моделирования процессов генерации, аккумуляции и рассеивания углеводородов в нефтегазовой системе Южно-Карского очага создают теоретическую основу для разработки критериев и построения схемы количественной оценки перспектив нефтегазоносности северных и арктических нефтегазоносных провинций.

Учеными этого же Института предложена и численно исследована принципиальная модель механизма формирования бескорневых структур осадочного чехла и связанных с ними крупных газовых месторождений. Математическое моделирование процесса всплывания газонасыщенных пород сводится к расчету происходящего под действием силы тяжести «ползущего течения» неоднородной по плотности высоковязкой ньютоновской жидкости, ограниченной сверху свободной поверхностью. Эволюция «ползущих течений» в каждый момент времени целиком определяется конфигурацией объемных сил и поверхностных нагрузок и представляется последовательностью связанных между собой квазистационарных состояний. На рис. 43 представлены состояния структуры, подобной Медвежьему поднятию, соответствующие возрасту 5, 15 и 25 миллионов лет от начала процесса.

Рис. 42. Средняя интенсивность генерации жидких (а) и газообразных (б) углеводородов в Южно-Карском очаге.



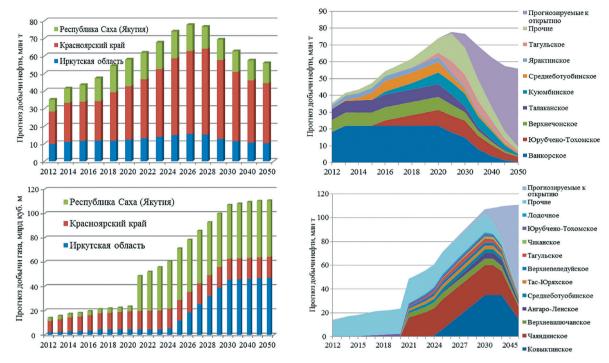

Рис. 43. Расчет эволюции модельной структуры.

a — состояние, соответствующее 5 млн лет, δ — 15 млн лет, ϵ — 25 млн лет от начального состояния.

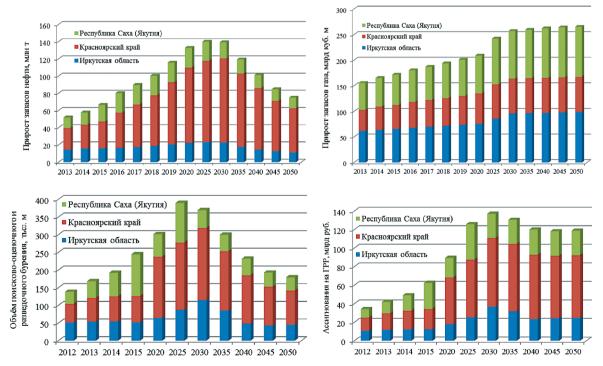
Программа VIII.73.3. Эволюция гидрогеологических систем осадочных бассейнов Сибири (координаторы член-корр. РАН А. Р. Курчиков, докт. геол.-мин. наук С. В. Алексеев, докт. геол.-мин. наук С. Л. Шварцев)

Учеными Института нефтегазовой геологии и геофизики им. А. А. Трофимука в результате изучения геохимии подземных вод нефтегазоносных отложений арктических районов Западной Сибири и сопредельных территорий

Енисей-Хатангского регионального прогиба установлены основные типы вертикальной и латеральной гидрогеохимической зональности и предложены факторы их формирования (рис. 44).


Рис. 44. Палеогидрогеохимическая схема западной части Енисей-Хатангского бассейна с элементами фациальной зональности (волжский век).

1 – глубокие скважины; 2 – границы палеогеографических обстановок; денудационные области: 3 – горы низкие; 4 – равнина возвышенная (денудационная суша); области континентального осадконакопления: 5 – равнина низменная, аккумулятивная (осадки русел, пойм, озер и др.); области переходного осадконакопления: 6 – равнина прибрежная, временами заливавшаяся морем (осадки дельтовые, береговых баров, пляжевые); области морского осадконакопления: 7 – море мелкое (глубина моря менее 25 м); 8 – море мелкое (глубина моря 25–100 м); 9 – море мелкое (глубина моря 100–200 м); 10 – море глубокое (глубина моря 200–400 м); палеогидрогеохимические зоны захоронения: 11 – пресных инфильтрогенных вод с минерализацией до 0,5 г/дм³, с преобладанием в составе ионов НСО³- и Са²+; 12 – пресных и солоноватых инфильтрогенных вод с минерализацией 0,5–2,0 г/дм³, с преобладанием в составе ионов НСО³- и Са²+; при повышенном содержании ионов СГ и Na+; 13 – солоноватых вод с минерализацией 2,0–5,0 г/дм³, с преобладанием в составе ионов СГ и Na+, при повышенном содержании НСО³- и Са²+; 14 – солоноватых вод с минерализацией 5,0–15,0 г/дм³, с преобладанием в составе ионов СГ и Na+, при повышенном содержании ионов Са²+ и Мg²+; 15 – соленых (талассогенных) вод с минерализацией 15,0–20,0 г/дм³, с преобладанием в составе ионов СГ и Na+, при повышенном содержании Мg²+; 16 – соленых (талассогенных) вод с минерализацией 20,0–30,0 г/дм³, с преобладанием в составе ионов СГ и Na+, при повышенном содержании Мg²+; 17 – соленых (талассогенных) вод с минерализацией 20,0–30,0 г/дм³, с преобладанием в составе ионов СГ и Na+, при повышенном содержании Мg²+; 17 – соленых (талассогенных) вод с минерализацией 20,0–30,0 г/дм³, с преобладанием в составе ионов СГ и Na+, при повышенном содержании Мg²+; 17 – соленых (талассогенных) вод с минерализацией 20,0–30,0 г/дм³, с преобладанием в составе ионов СГ и Na+, при повышенном содержании Мg²+.


Программа VIII.73.4. Научные основы формирования сырьевой базы традиционных и нетрадиционных источников углеводородного сырья в Сибири в XXI веке (координаторы акад. А. Э. Конторович, член-корр. РАН В. А. Каширцев)

Учеными Института нефтегазовой геологии и геофизики им. А. А. Трофимука проведены уточнение и детализация ресурсно-сырь-

евой базы Восточной Сибири и Республики Саха (Якутия), включая нефть, газ, конденсат, а также УВ, выступающих в качестве сырья для

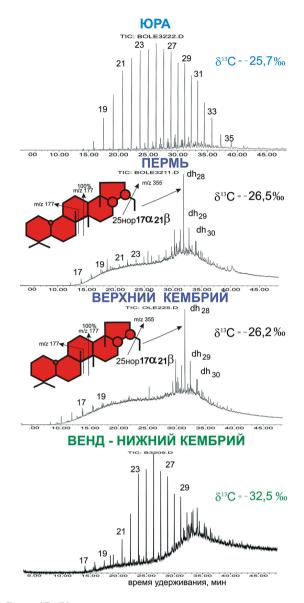

Рис. 45. Прогноз добычи нефти и газа в Восточной Сибири и Республике Саха (Якутия) с дифференциацией по регионам и месторождениям в период до 2050 г.

Рис. 46. Прогноз показателей воспроизводства минерально-сырьевой базы углеводородов в Восточной Сибири и Республике Саха (Якутия) в период до 2050 г.

нефтехимической промышленности - этана, пропана, бутана. На основе детального анализа ресурсно-сырьевой базы с учетом планов компаний и стратегических документов развития НГК, а также тенденций на основных мировых энергетических рынках была проведена оценка перспективных уровней добычи нефти и газа, а также сырья для нефтехимии (этана, пропан-бутановой фракции) в Восточной Сибири, а также Республики Саха (Якутия). С учетом представленных факторов добыча нефти в Восточной Сибири и Республике Саха (Якутия) может возрасти до 70-75 млн т к 2030 г., газа – до 100-110 млрд м³ к 2035-2050 гг. (рис. 45), этана – до 1,5–2 млн т, пропан-бутановой фракции до 1,3-1,8 млн т. Для устойчивости развития нефтегазового комплекса восточных регионов России выполнен прогноз воспроизводства минерально-сырьевой базы углеводородов в Восточной Сибири и Республике Саха (Якутия) в период 2013-2050 гг. Ежегодный объем поисково-разведочного бурения должен возрасти до 300-350 тыс. м, ассигнований на ГРР - 110-120 млрд руб. (рис. 46).

Учеными этого же Института на основе анализа особенностей молекулярного и изотопного состава углерода органического вещества по опубликованным и новым геолого-геохимическим материалам показано, что в пределах Оленекского поднятия и платформенного склона краевого прогиба существуют три самостоятельные генетические семейства нафтидов, каждому из которых соответствовали собственные «очаги» нефтегазообразования, разобщенные как во времени, так и в пространстве. Нафтидопроявления первого семейства встречены в породах венда и нижнего кембрия, второго – верхнего кембрия и перми, третьего – юры (рис. 47).

Рис. 47. Хроматограммы насыщенных углеводородов и изотопный состав углерода нафтидопроявлений на склонах Оленекского поднятия.