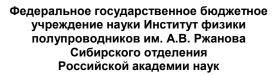
Российская конференция и школа молодых ученых по актуальным проблемам спектроскопии комбинационного рассеяния света

КОМБИНАЦИОННОЕ РАССЕЯНИЕ - 95 ЛЕТ ИССЛЕДОВАНИЙ


5-9 июня 2023 г., Новосибирск

ПРОГРАММА

НОВОСИБИРСК 2023

ОРГАНИЗАТОРЫ

Веб-сайт: https://www.isp.nsc.ru/

Министерство науки и высшего образования Российской Федерации

ГЕНЕРАЛЬНЫЙ СПОНСОР

OOO «НТ-МДТ» – группа компаний NT-MDT Spectrum Instruments

Веб-сайт: http://www.ntmdt-si.ru/

СПОНСОРЫ

ООО «НОВА СПБ» (Группа компаний ООО «НТ-МДТ»)

Веб-сайт: https://spb-novaspb.ru/

ООО «ИНМИКРО» (Группа «ЭМТИОН»)

Веб-сайт: https://www.mteon.ru/

Группа компаний "Научное оборудование"

Веб-сайт: https://spegroup.ru/

ПРИ СОДЕЙСТВИИ

Точка кипения - Новосибирск

ПРОГРАММНЫЙ КОМИТЕТ

Сопредседатели конференции

Латышев А.В. ИФП СО РАН, г. Новосибирск

Милёхин А.Г. ИФП СО РАН, г. Новосибирск

Шабанов В.Ф. ФИЦ КНЦ СО РАН, г. Красноярск

Заместители председателя

Втюрин А.Н. ИФ СО РАН, г. Красноярск

Суровцев Н.В. ИАиЭ СО РАН, г. Новосибирск

Ученый секретарь

Аржанникова С.А. ИФП СО РАН, г. Новосибирск

Члены программного комитета

Гапоненко С.В. Институт физики им. Б.И. Степанова

НАН Беларуси, г. Минск

Денисов В.Н. ТИСНУМ, г. Москва, г. Троицк

Красильник З.Ф. ИФМ РАН, г. Нижний Новгород

Колесов Б.А. ИНХ СО РАН, г. Новосибирск

Корсаков А.В. ИГМ СО РАН, г. Новосибирск

Кукушкин И.В. ИФТТ РАН, г. Черноголовка

Кулаковский В.Д. ИФТТ РАН, г. Черноголовка

Кулик Л.В. ИФТТ РАН, г. Черноголовка

Мельник Н.Н. ФИАН, г. Москва

Наумов А.В. ИСАН, г. Москва, г. Троицк

Образцова Е.Д. ИОФ РАН, г. Москва

Поносов Ю.С. ИФМ УрО РАН, г. Екатеринбург

Шубина Т. В. ФТИ имени А.Ф. Иоффе РАН,

г. Санкт-Петербург

Щапова Ю.В. ИГГ УрО РАН, г. Екатеринбург

ОРГАНИЗАЦИОННЫЙ КОМИТЕТ

Председатель

Каламейцев А.В. ИФП СО РАН, г. Новосибирск

Члены оргкомитета

Бетеров И.И. ИФП СО РАН, г. Новосибирск

Володин В.А. ИФП СО РАН, г. Новосибирск

Есин М.Ю. ИФП СО РАН, г. Новосибирск

Крылов А.С. ИФ СО РАН, г. Красноярск

Крылова С.Н. ИФ СО РАН, г. Красноярск

Курусь Н.Н. ИФП СО РАН, г. Новосибирск

Милахин Д.С. ИФП СО РАН, г. Новосибирск

Милёхин И.А. НГУ, г. Новосибирск

Окотруб К.А. ИАиЭ СО РАН, г. Новосибирск

Шамирзаев Т.С. ИФП СО РАН, г. Новосибирск

Адрес и контакты Программного и Организационного комитетов

ФГБУН Институт физики полупроводников

им. А.В. Ржанова СО РАН

пр. Ак. Лаврентьева 13, 630090, Новосибирск, Россия Ученый секретарь конференции - Аржанникова София Андреевна

Помощник – Есин Михаил Юрьевич

Тел.: +7(383) 333-24-88; Факс: +7(383) 333-27-71;

E-mail: scattering95@isp.nsc.ru

Российская конференция и школа молодых ученых по актуальным проблемам спектроскопии комбинационного рассеяния света «Комбинационное рассеяние - 95 лет исследований»

Конференц-зал Технопарка (ул. Николаева, д. 11, 13 этаж)

Понедельник, 5 июня 2023

900-930 Регистрация участников конференции

1-е заседание. Председатель – А.Г. Милёхин

9³⁰ – 9⁴⁵ Открытие конференции. Вступительное слово. **Академик А.В. Латышев**

9⁴⁵ – 10²⁵
 А.В. Наумов. Нанодиагностика и сенсорика: достижения и перспективы в области флуоресцентной наноскопии и поверхностно-усиленного комбинационного рассеяния света (пленарный доклад).
 Троицкое подразделение ФИАН им. П.Н. Лебедева, Москва, Россия; Институт спектроскопии РАН, Москва, Россия; Московский педагогический

московскии пеоагогическии государственный университет, Москва, Россия.

10²⁵ – 10⁵⁵ С.С. Харинцев. Электронное комбинационное рассеяние света в непрямозонных полупроводниках (приглашенный доклад). Казанский федеральный университет, Казань, Россия.

10⁵⁵ – 11¹⁰ В.А. Быков, Ан.В. Быков, А.А. Быков, В.В. Котов, С.И. Леесмент, В.В. Поляков. Скандирующая зондовая микроскопия и спектроскопия наноструктур. НТ-МДТ – приборы и возможности (доклад генерального спонсора). ООО «НТ-МДТ Спектрум Инструментс», Москва.

11¹⁰ – 11³⁰ Кофе-брейк

2-е заседание Председатель – Ю.В. Щапова

11³⁰ – 12⁰⁰ <u>Н.В. Суровцев</u>. Спектроскопия Мандельштама-Бриллюэна биологических материалов (приглашенный доклад). Институт автоматики и электрометрии СО РАН, Новосибирск, Россия.

12⁰⁰ – 12³⁰

А.Г. Милёхин¹, И.А. Милёхин^{1,2}, Н.Н. Курусь¹, Л.С. Басалаева¹, Р.Б. Васильев³, К.В. Аникин¹, В.Г. Мансуров¹, К.С. Журавлев¹, Е.А. Емельянов¹, М.А. Путято¹, В.В. Преображенский¹, А.В. Латышев^{1,2}, D.R.T. Zahn⁴.

Комбинационное рассеяние света и фотолюминесценция полупроводниковых наноструктур с нанометровым пространственным разрешением (приглашенный доклад).

¹ Институт физики полупроводников

¹ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия;

² Новосибирский Государственный университет, Новосибирск, Россия; ³ Московский государственный университет

имени М.В. Ломоносова, Москва, Россия;

Semiconductor Physics, Chemnitz University of

Technology, Chemnitz, Germany.

12³⁰ – 12⁴⁵

А.Н. Втюрин 1,2, А.С. Крылов 1, С.Н. Крылова 1, Е.М. Рогинский 3, L. Jin 4, Y. Tian 4, X. Wei 4, В.В. Воног 2.

Комбинационное рассеяние света и низкотемпературные фазовые переходы в керамиках ниобатов серебра и литийтантал-серебра.

1 Институт физики им. Л. В. Киренского СО РАН, Красноярск, Россия;

2 Сибирский федеральный университет, Красноярск, Россия;

3 Физико-технический институт им. А.Ф. Иоффе, Санкт-Петербург, Россия;

4 Intl. Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, China.

0.С. Kydpявцев 1 , P.X. Баграмов 2 , Д.Г. Пастернак 1 , A.М. Сатанин $^{3.4}$, O.И. Лебедев 5 , B.П. Филоненко 2 , U.И. Bласов 1 .

Спектроскопия комбинационного рассеяния нового класса наноалмазов, синтезированных из адамантана.

¹ Институт общей физики им. А.М. Прохорова РАН, Москва, Россия; ² Институт физики высоких давлений им. Л.Ф. Верещагина РАН, Троицк, Россия; ³ Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова, Москва, Россия;

 Национальный исследовательский университет «Высшая школа экономики», Москва, Россия;

⁵ Laboratoire CRISMAT, Caen, France.

13⁰⁰ – 13¹⁵ С.Н. Подлесный, В.А. Антонов, <u>И.А. Карташев</u>, В.П. Попов. КРС и ОДМР спектроскопия NV⁻центров в нанослоях и наностолбах (111) алмаза после травления сфокусированным пучком ионов Ga⁺. Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия.

13¹⁵ – 13³⁰ <u>П.В. Швец</u>, К.Ю. Максимова, А.Ю. Гойхман. Комбинационное рассеяние света в системе V – О (ванадий – кислород). Балтийский федеральный университет имени Иммануила Канта, Калининград, Россия.

13³⁰ – 14³⁰ Обед

3-е заседание. Председатель - Н.В. Суровцев

- 14³⁰ 15⁰⁰ А.В. Корсаков, С.П. Демин. КР-картирование включений и содержащих их минералов (приглашенный доклад). Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия.
- 15⁰⁰ 15³⁰ В.А. Володин 1,2</sup>, В.А. Сачков 3. Деформационный и электрооптический механизм комбинационного рассеяния света в модели «заряд на связи»: моделирование и сравнение с экспериментом для короткопериодных сверхрешёток GaAs/AlAs (приглашенный доклад).

 1 Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия;
 2 Новосибирский государственный университет, Новосибирск, Россия;
 - ² Новосибирский государственный университет, Новосибирск, Россия; ³ Омский научный центр СО РАН, Омск, Россия.
- 15³⁰ 15⁴⁵ Д.А. Козодаев, Е.В. Кузнецов, <u>М.А. Трусов</u>. Мульти-модальный конфокальный микроспектрометр нового поколения для много-фотонных оптических экспериментов на нано-масштабе (доклад спонсора). ООО «НОВА СПБ», Санкт-Петербург, Россия.

2. Исследование мультиферроика ТБFe_{2.46}Ga_{0.54}(BO₃)₄ методом КРС: угловые зависимости, фазовая диаграмма давлениетемпература.

1 Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия;
2 Сибирский федеральный университет, Красноярск, Россия.

2.В. Горяйнов¹, А.С. Крылов², У.О. Бородина¹, С.Н. Крылова², А.Ю. Лихачева¹, С.Н. Гришина¹. КР исследование разложения карбонатов в водном флюиде при высоких Р-Т параметрах. ¹Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия; ²Институт физики им. Л.В. Киренского СО РАН — обособленное подразделение ФИЦ «Красноярский научный центр СО РАН», Красноярск, Россия.

Е.А. Панкрушина
1.2, С.Л. Вотяков
1, Е.В. Комлева
3. Терморамановская in situ спектроскопия природного кубанита CuFe₂S₃ и ab initio расчеты его фононного спектра.
1 Институт геологии и геохимии им. академика А.Н. Заварицкого УрО РАН, Екатеринбург, Россия;
2 ФИЦ КНЦ РАН, Апатиты, Россия;
3 Институт физики металлов УрО РАН, Екатеринбург, Россия.

16³⁰ – 16⁵⁰ Кофе-брейк

4-е заседание Председатель - А.Н. Втюрин

А.В. Кацюба¹, А.В. Двуреченский^{1,2}, Г.Н. Камаев¹, В.А. Володин^{1,2}, П.А. Кучинская¹. Полиморфные превращения в пленках CaSi₂, формируемых при радиационностимулированном росте.

¹ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия;

² Новосибирский государственный университет, Новосибирск, Россия.

17⁰⁵ – 17²⁰ <u>И.Д. Юшина</u>¹, А.С. Крылов².
Теоретическое моделирование спектральных характеристик и нелинейных эффектов в кристаллах металлоорганических каркасов.

¹ Южно-Уральский государственный университет, Челябинск, Россия;

² Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия.

17²⁰ – 17³⁵

Л.И. Богданова¹, Ю.В. Щапова^{1,2}.
Определение кристаллографической ориентировки кристаллов алмаза методом спектроскопии комбинационного рассеяния света.

¹ Институт геологии и геохимии им. академика А.Н. Заварицкого УрО РАН, Екатеринбург, Россия;

² Уральский Федеральный Университет имени первого Президента России Б.Н. Ельцина, Екатеринбург, Россия.

17³⁵ – 18³⁵ Стендовая секция – 1

Вторник, 6 июня 2023

5-е заседание Председатель - В.А. Володин

 $9^{00} - 9^{30}$ **Е.Д.** Образцова^{1,2}, П.В. Федотов^{1,2}, $\overline{\mathsf{U.A.}}$ Елисеев 3 , $\overline{\mathsf{B.}}$ Ю. Давыдов 3 , Darwin Kurniawan⁴, Wei-Hung Chiang⁴. Спектроскопические характеристики графеновых квантовых точек - нового 0мерного материала для экологии и биологии (приглашенный доклад). ¹ Институт общей физики им. А.М. Прохорова РАН, Москва, Россия; ² Московский физико-технический институт, Долгопрудный, Россия; ³ Физико-технический институт им. А.Ф. Иоффе, Санкт-Петербург, Россия; ⁴ Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.

9³⁰ – 9⁴⁵

Д.В. Щеглов¹, О.И. Семенова¹,
С.В. Родякин¹, Н.Н. Курусь¹, Д.И. Рогило¹,
Д.А. Насимов¹, А.К. Гутаковский¹,
Л.И. Федина¹, И.О. Дудин², А.А. Павлов²,
А.В. Латышев¹.
Структура и спектры КРС массивов
вертикально ориентированных углеродных
нанотрубок.

¹ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия;

² Институт нанотехнологий микроэлектроники РАН, Москва, Россия.

9⁴⁵-10⁰⁰ О.П. Черкасова¹, А. Самаринова², Д.А. Вражнов², Ю.В. Кистенев². Спектроскопия комбинационного рассеяния света плазмы крови человека для

диагностики глиомы.

¹ Институт автоматики и электрометрии СО РАН, Новосибирск, Россия; ² Томский государственный университет

² Томский государственный университет, Томск. Россия.

- 10⁰⁰ 10¹⁵ Н.Н. Мельник¹, С.К. Симаков², Д.С. Косцов¹. Необычные свойства спектра КРС "угольного графита" с месторождения Сэрэген (Таймыр) Новая аллотропная форма углерода?

 1 Физический институт им. П.Н. Лебедева РАН, Москва, Россия;
 2 ООО АДАМАНТ, Санкт-Петербург, Россия.
- 10¹⁵ 10³⁰

 В.А. Калинин^{1,2}, Н.Н. Курусь¹,

 Н.А Небогатикова¹, И.В Антонова^{1,2},

 Е.Е. Родякина^{1,2}, А.Г. Милехин¹,

 А.В. Латышев^{1,2}.

 ГКРС на оптических колебательных модах графена.

 ¹ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия;

 ² Новосибирский государственный университет, Новосибирск, Россия.
- 10³⁰ 10⁴⁵ **Е.А. Голубев**¹, Е.Ф. Шека². Молекулярный подход к комбинационному рассеянию разупорядоченного sp² углерода.
 ¹ Институт геологии ФИЦ Коми НЦ УрО РАН, Сыктывкар, Россия;
 ² Российский университет дружбы народов, Москва. Россия.
- 10⁴⁵ 11⁰⁰ О.И. Соколовская, Л.А. Головань.
 Влияние упругого рассеяния света в суспензиях субмикронных частиц на характер распространения света и эффективность комбинационного рассеяния света.
 Физический факультет МГУ им.
 М.В. Ломоносова, Москва, Россия.
- 11⁰⁰ 11³⁰ Кофе-брейк

6-е заседание Председатель - Н.Н. Мельник

 $11^{30} - 12^{00}$

А.М. Можаров², И.С. Мухин², Г.Э. Цырлин², Д.А. Кириленко¹, А.Н. Смирнов¹, В.Ю. Давыдов¹. Оптические и электронные явления в нитевидных нанокристаллах при механической деформации (приглашенный доклад).

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия;

П.А. Алексеев¹, В.А. Шаров¹, В.В. Фёдоров²,

² Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алфёрова РАН, Санкт-Петербург, Россия.

12⁰⁰ – 12¹⁵ Т.С. Шамирзаев 1, D. Kudlacik², Д.Р. Яковлев²,3, М. Вауег². Комбинационное рассеяние света с переворотом спина в непрямозонных КТ (In,Al)As/AlAs.

1 Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия;
2 Experimental Physics 2, TU Dortmund University, Dortmund, Germany;
3 Физико-технический институт

нанокристаллов GaAs.

Россия.

Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия.

им. А.Ф.Иоффе РАН, Санкт-Петербург,

12³⁰ – 12⁴⁵ <u>И.Е. Тысченко</u>¹, В.А. Володин^{1,2}, В.П. Попов¹. Комбинационное рассеяние света в структурах Si_xGe_{1-x}-на -изоляторе, созданных диффузией имплантированного Ge из захороненного слоя SiO₂.

¹ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия;

² Новосибирский государственный университет, Новосибирск, Россия.

 $12^{45} - 13^{00}$ **Ю.В. Щапова**^{1,2}, Л.Я. Сушанек¹, $\overline{A.H. \ Kupяков^2}$, $A.\Phi.3aueпuh^2$, С.Х. Сулейманов³. Комбинационное рассеяние света и люминесценция тонких пленок MgAl₂O₄. ¹ Институт геологии и геохимии имени академика А.Н. Заварицкого УрО РАН, Екатеринбург, Россия; ² Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, Екатеринбург, Россия; ³Институт материаловедения Научнопроизводственного объединения «Физика – Солнце» Академии наук Республики Узбекистан, Ташкент, Узбекистан.

13⁰⁰ – 13¹⁵

<u>И.А. Милёхин</u>^{1,2,3,4}, К.В. Аникин², Н.Н. Курусь², В.Г. Мансуров², Т. Малин², К.С. Журавлев², А.Г. Милёхин^{1,2}, А.В. Латышев^{1,2}, D.R.T. Zahn^{3,4}.

Локальное гиперспектральное картирование нанокластера AIN с нанометровым пространственным разрешением.

¹ Новосибирский Государственный университет, Новосибирск, Россия;

² Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия;

³ Физика полупроводников, Хемницкий

технологический университет, Хемниц,

Германия;

⁴ Центр материалов, архитектуры и интеграции наномембран (MAIN), Хемницкий технологический университет, Хемниц, Германия.

13¹⁵ – 13³⁰ А.С. Кореев 1, А.Б. Ваньков 1,2</sup>, П.С. Бережной 1,2, И.В. Кукушкин 1,2. Детектирование спиновых и спин-текстурных возбуждений методом резонансного неупругого рассеяния света в режиме квантового эффекта Холла в MgZnO/ZnO гетероструктурах.

1 Институт физики твердого тела, РАН, Черноголовка, Россия;

² Лаборатория физики конденсированного состояния, ВШЭ, Москва, Россия.

13³⁰ – 14³⁰ Обед

7-е заседание Председатель - А.С. Крылов

A.A. Рябин 1 , А.С. Крылов 2 , С.Н. Крылова 2 , Д.В. Пелегов 1,3 . Зависимость спектров КР кобальтата лития

зависимость спектров кР кооальтата лития от температуры и мощности лазерного излучения.

¹ Институт естественных наук и математики УрФУ, Екатеринбург, Россия; ² Институт физики им. Л. В. Киренского СО РАН, Красноярск, Россия; ³ ЦК НТИ «Мобильные накопители энергии», Институт электродвижения МФТИ, МО, Долгопрудный, Россия.

14⁴⁵ – 15⁰⁰ <u>А.В. Шелаев</u>, Е.М. Сгибнев, П.Н. Тананаев, А.В. Барышев.

Исследование кристаллизации висмутзамещенного железоиттриевого граната методом спектроскопии комбинационного рассеяния.

Всероссийский научно-исследовательский

институт автоматики им. Н.Л. Духова, Москва, Россия.

15⁰⁰ – 15¹⁵

А.В. Павликов¹, А.М. Шарафутдинова¹, А.М. Рогов^{2,3}, С.Н. Бокова-Сирош^{4,5}, Е.Д. Образцова^{4,5}, А.Л. Степанов². Влияние толщины имплантированных слоев Ge на лазерный нагрев при исследовании методом КРС.

¹ Физический факультет МГУ им. М.В. Ломоносова, Москва, Россия; ² Казанский физико-технический институт им. Е.К. Завойского ФИЦ КазНЦ РАН, Казань, Россия:

³ Казанский федеральный университет, Казань, Россия;

⁴Институт общей физики им.

А.М. Прохорова РАН, Москва, Россия; ⁵ Московский физико-технический институт, Московская область, Долгопрудный, Россия.

15¹⁵ – 15³⁰ **Ф. Чжан**^{1,2}, В.А. Володин¹.

Проявление эффекта локализации фононов в спектрах комбинационного рассеяния света аморфных нанокластеров германия в матрице GeO_x.

¹ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия; ² Новосибирский государственный университет, Новосибирск, Россия.

15³⁰ – 15⁴⁵ **Д.В. Киселева**¹, Е.А. Панкрушина¹, Е.С. Шагалов².

КР исследование лазерно-индуцированных эффектов окисления и нагрева пигментов на основе оксидов и гидроксидов железа.

¹ Институт геологии и геохимии УрО РАН, Екатеринбург, Россия:

² Уральский государственный горный университет, Екатеринбург, Россия.

15⁴⁵ – 16⁰⁰

<u>Н.А. Лунев</u> ^{1,2}, А.О. Замчий ¹, Ю.В. Воробьев ³, В.О. Константинов ¹, Е.А. Баранов ¹. Исследование кинетики золото-индуцированной кристаллизации тонких пленок аморфного субоксида кремния.
¹ Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск, Россия;
² Новосибирский государственный университет, Новосибирск, Россия;
³ Рязанский государственный радиотехнический университет им. В.Ф. Уткина, Рязань, Россия.

16⁰⁰ – 16¹⁵ Кофе-брейк

8-е заседание Председатель - А.В. Корсаков

 $16^{15} - 16^{30}$ **Д.В. Пелегов** 1,2 .

Спектроскопия комбинационного рассеяния для материалов литиевых аккумуляторов: текущее состояние и перспективы.

¹ Институт естественных наук и математики УрФУ, Екатеринбург, Россия;

² ЦК НТИ «Мобильные накопители энергии», Институт электродвижения МФТИ, Московская область, Долгопрудный, Россия.

16³⁰ – 16⁴⁵ *М.М. Гафуров, <u>К.Ш. Рабаданов</u>, 3.Ю. Кубатаев.* Комбинационное рассеяние света в исследованиях композитных электролитных систем.

Дагестанский федеральный исследовательский центр РАН, Махачкала, Россия;

Аналитический центр коллективного пользования ДФИЦ РАН, Махачкала, Россия.

16⁴⁵ – 17⁰⁰ <u>З.Ю. Кубатаев</u>, М.М. Гафуров, К.Ш. Рабаданов. Влияние наноразмерных оксидов на структурно-динамические свойства композитов на основе LiClO₄. Дагестанский федеральный исследовательский центр РАН, Махачкала, Россия;

Аналитический центр коллективного пользования ДФИЦ РАН, Махачкала, Россия.

 $17^{00} - 17^{15}$ **А.С. Таничев**¹, Д.В. Петров^{1,2}.

Возможности измерения концентрации гелия в природном газе с помощью спектроскопии КР.

¹ Институт мониторинга климатических и экологических систем СО РАН, Томск, Россия;

² Томский государственный университет, Томск. Россия.

- 17¹⁵ 18¹⁵ В.Н. Новиков, Е.А. Добрынина, И.В. Зайцева. Определение величины нанометровых флуктуаций сдвигового модуля в стеклах и переохлажденных жидкостях методом неупругого рассеяния света. Институт автоматики и электрометрии СО РАН, Новосибирск, Россия.
- 18¹⁵ 19¹⁵ Стендовая секция 2

Среда, 7 июня 2023

9-е заседание Председатель - Т.В. Шубина

- 9⁰⁰ 9³⁰ А.В. Родина, Е.Л. Ивченко. Комбинационное рассеяние света с переворотом спина в перовскитах и плателетах (приглашенный доклад). Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия.
- 9³⁰ 10⁰⁰

 A.C. Крылов¹, И.Д. Юшина², С.Н. Крылова¹,

 I. Senkovska³, А. Н. Втюрин^{1,4}.

 Ничзкочастотная спектроскопия КР
 металлоогранических каркасных соединений
 (приглашенный доклад).

 ¹ Институт физики им. Л.В. Киренского ФИЦ
 КНЦ СО РАН, Красноярск, Россия;

 ² Южно-уральский государственный
 университет, Челябинск, Россия;

 ³ Technische Universität Dresden, Dresden,
 Germany;

 ⁴ Сибирский федеральный университет,
 Красноярск, Россия.
- 10⁰⁰ 10¹⁵ Raul D. Rodriguez¹, <u>Tuan-Hoang Tran</u>¹,
 Dmitry Cheshev¹, Nelson E. Villa¹,
 Muhammad Awais Aslam², Jelena Pesic³,
 Aleksandar Matković², Evgeniya Sheremet¹.
 Strain and Defect Engineering of TwoDimensional Materials for Enhanced Chemical
 Activity Probed with Raman Spectroscopy.

 ¹ Tomsk Polytechnic University, Tomsk, Russia;
 ² Institute of Physics, Montanuniversit at Leoben,
 Leoben, Austria:
 - ³ Institute of Physics Belgrade, University of Belgrade, Pregrevica, Belgrade, Serbia.

10¹⁵ – 10³⁰ А.С. Орешонков ^{1,2}, Е.В. Суханова¹, 3.И. Попов¹. DFT моделирование спектров КРС монослойных дихалькогенидов молибдена со структурой типа «Янус».
¹ Институт биохимической физики им. Н.М. Эмануэля РАН, Москва, Россия;
² Институт физики им. Л.В. Киренского СО РАН – обособленное подразделение ФИЦ КНЦ СО РАН, Красноярск, Россия.

10³⁰ – 10⁴⁵ А.Ф. Бункин¹, М.А. Давыдов¹, С.М. Першин¹, А.Н. Федоров¹, М.В. Архипенко², О.В. Карпова². Низкочастотное вынужденное рассеяние лазерного излучения в водных суспензиях вирусов в частотном диапазоне 1-60 ГГц.

¹ Институт общей физики имени А.М. Прохорова Российской академии наук, Москва, Россия;
² Биологический факультет, МГУ им. М.В. Ломоносова, Москва, Россия.

10⁴⁵ – 11⁰⁰ Е.А. Добрынина, В.А. Зыкова, Н.В. Суровцев. Изучение температурной зависимости упругих свойств гидратированных планарных слоев фосфолипидов методом рассеяния Мандельштама-Бриллюэна. Институт автоматики и электрометрии СО РАН, Новосибирск, Россия.

11⁰⁰ – 11²⁰ Кофе-брейк

10-е заседание Председатель - Л.А. Осминкина

E.M. Рогинский , М.Б. Смирнов , А.В. Савин , Д.В. Панькин . Спектры комбинационного рассеяния сверхрешеток Si/SiO $_2$ как способ мониторинга строения интерфейсов в кремний-оксидных гетероструктурах (приглашенный доклад). 1 Физико-технический институт

им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия;

² Санкт-Петербургский государственный университет, Санкт-Петербург, Россия.

11⁵⁰ – 12²⁰ О.Д. Паращук¹, А.Ю. Сосорев², О.Г. Харланов¹, М.В. Венер³, А.А. Трубицын¹, Д.Ю. Паращук¹. Низкочастотная спектроскопия комбинационного рассеяния органических полупроводников и биомолекул. (приглашенный доклад).

(приглашенный доклад).

¹Московский государственный университет им. М.В. Ломоносова, физический факультет, Москва, Россия;

²Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН, Москва, Россия;

³Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия.

- 2.8. Адищев, В.А. Зыкова, Е.А. Добрынина, А.М. Пугачёв, Н.В. Суровцев.
 Определение пространственного распределения коллагена и эластина в бычьей вене с помощью рассеяния Мандельштама-Бриллюэна.
 Институт автоматики и электрометрии СО РАН, Новосибирск, Россия.
- 12³⁵ 12⁵⁰ В.А. Володин 1,2</sup>, В.А. Гриценко 1,3, Г.Н. Камаев 1, С.Г. Черкова 1, И.А. Азаров 1,2, Ю.Н. Новиков 1, А.А. Гисматулин 1, И.П. Просвирин 4. Применение комбинационного рассеяния света для анализа нанокластеров аморфного кремния в плёнках нестехиометрического нитрида кремния, применяющихся в элементах флэш-памяти и в матрицах резистивной памяти.

 1 Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия:

² Новосибирский государственный университет, Новосибирск, Россия;
³ Новосибирский государственный технический университет, Новосибирск, Россия;
⁴ Институт катализа им. Г.К. Борескова СО РАН, Новосибирск, Россия.

12⁵⁰ – 13⁰⁵ В.А. Антонов¹, В.А. Володин^{1,2}, В.П. Попов¹, А.В. Мяконьких², К.В. Руденко³, В.А. Скуратов⁴. Деградация свойств КНС псевдо-МОП сегнетотранзисторов (SOS FeFETs) после облучения электронами и быстрыми ионами Хе и Ві.

¹ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия;

² Новосибирский государственный университет, Новосибирск, Россия; ³ Физико-технологический институт имени К.А. Валиева РАН, Москва, Россия; ⁴ Объединенный институт ядерных исследований, Дубна, Россия.

13⁰⁵ – 13²⁰ А.Н. Омельченко ^{1,2}, К.А. Окотруб¹. Применение метода комбинационного рассеяния света к детектированию дейтерированных метаболитов в дрожжевых клетках.

¹ Институт автоматики и электрометрии СО РАН, Новосибирск, Россия;

СО РАН, Новосибирск, Россия; ² Новосибирский государственный университет, Новосибирск, Россия.

13²⁰ – 13³⁵ Н.П. Ковалец^{1,2}, Е.П. Кожина^{1,2}, И.В. Разумовская¹, С.А. Бедин^{1,2,3}, А.В. Наумов^{1,2,4}. Спектроскопия оптического поглощения и комбинационного рассеяния металлизированных трековых мембран.

1 Московский педагогический

государственный университет, Москва, Россия;

² Физический институт им. П.Н. Лебедева РАН, Москва, Россия;

³ ФНИЦ «Кристаллографии и фотоники» РАН, Москва, Россия;

⁴ Институт спектроскопии РАН, Троицк, Россия.

13³⁵ – 14³⁰ Обед

15⁰⁰ – 19⁰⁰ Экскурсии

<u>Четверг, 8 июня 2023</u>

11-е заседание Председатель - Б.А. Колесов

9⁰⁰ – 9³⁰ *Т.В. Шубина*.

Исследования экситонного спектра и оптических мод в 2D монослоях и наноструктурах дихалькогенидов переходных металлов с использованием микроспектроскопии фотолюминесценции и комбинационного рассеяния света (приглашенный доклад).

Физико-технический институт им.

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт Петербург, Россия.

9³⁰ – 10⁰⁰ **С.И. Кудряшов**, П.А. Данилов, С.А. Остриков.

КР-активный оптический фонон как in situ маркер сверхбыстрой динамики лазерногенерированных электрон-дырочной плазмы, механических напряжений и высоких температур, а также онтогенетической неоднородности в алмазах (приглашенный доклад).

Физический институт им. П.Н. Лебедева, Москва, Россия.

- 10⁰⁰ 10¹⁵ <u>**Н.Н. Курусь**</u>¹, В.А. Калинин²
 - $\overline{H.A.\ He}$ Бога тикова 1 , И.В. Антонова 1,2 ,
 - Е.Е. Родякина^{1,2}, А.Г. Милёхин¹,
 - А.В. Латышев^{1,2}.

Нано-КРС графеном.

- ¹ Институт физики полупроводников им.
- А.В. Ржанова СО РАН, Новосибирск, Россия;
- ² Новосибирский государственный университет, Новосибирск, Россия.
- 10¹⁵ 10³⁰ **Д.А. Назаровская**¹, О.Д. Гюппенен¹, П.А. Домнин^{2,3}, И.И. Циняйкин¹.

Л.А. Осминкина¹. Наноструктуры кремниевых нанонитей, декорированных наночастицами благородных металлов, для диагностики антибиотикорезистентности бактерий методом гигантского комбинационного рассеяния.

С.А. Ермолаева³, К.А. Гончар¹,

¹ Московский государственный университет им. М.В. Ломоносова, физический факультет, Москва, Россия;

² Московский государственный университет им. М.В. Ломоносова, биологический факультет, Москва, Россия;

³ Национальный исследовательский центр эпидемиологии и микробиологии им. Н.Ф. Гамалеи, Москва, Россия.

10³⁰ – 10⁴⁵ **А.А. Шкляев** ^{1,2}, Д.Е. Уткин^{1,2}, В.А. Володин^{1,2}, А.В. Царёв^{1,2}.

Усиление сигнала комбинационного рассеяния света при возбуждении резонансов в решётке из дисков германия субволнового размера.

¹ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия;

² Новосибирский государственный университет, Новосибирск, Россия.

10⁴⁵ – 11⁰⁰ Д.В. Шулейко¹, С.В. Заботнов¹, П.А. Данилов^{1,2}, Е.В. Кузьмин^{1,2}, Т.С. Кункель^{1,3}, П.К. Кашкаров¹. Иерархические поверхностные периодические структуры и фазовые трансформации в пленках халькогенидных стеклообразных полупроводников, индуцированные фемтосекундными лазерными импульсами.

¹ Московский государственный университет им. М.В. Ломоносова, физический

факультет, Россия;

² Физический институт им. П.Н. Лебедева РАН, Москва, Россия;

³ Московский физико-технический институт, Долгопрудный, Россия.

11⁰⁰ – 11³⁰ Кофе-брейк

12-е заседание Председатель - А.С. Крылов

11³⁰ – 12⁰⁰ **Б.А. Колесов**.

КР-спектральное исследование сильных водородных связей (приглашенный доклад). Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия.

12⁰⁰ – 12³⁰ **Л.А. Осминкина**.

Спектроскопия комбинационного рассеяния света и фотолюминесцентная микроскопия для изучения взаимодействия наноконтейнеров на основе пористого кремния с живыми клетками (приглашенный доклад).

Физический факультет Московского государственного университета им. М.В. Ломоносова, Москва, Россия; Институт биологического приборостроения РАН, Московская область, Пущино, Россия.

12³⁰ – 12⁴⁵ **В.А. Абалмасов**.

Частоты ОН-колебаний в кристалле КН₂РО₄ и их зависимость от давления из первопринципных расчётов. Институт автоматики и электрометрии СО РАН, Новосибирск, Россия.

12⁴⁵ – 13⁰⁰ С.М. Першин, А.Ф. Бункин.

Нелинейно-оптическая спектроскопия КР: вращение орто-пара спиновых изомеров Н₂О в воде и их конверсия. Институт общей физики

им. А.М. Прохорова РАН, Москва, Россия.

13⁰⁰ – 13¹⁵ **А.В. Крайский**.

Комбинационное рассеяние света на межмолекулярных колебаниях воды в воде и в слабых водных растворах и свойства спектральных параметров этих полос в частотных координатах.

Физический институт им. П.Н. Лебедева РАН, Москва, Россия.

13³⁰ – 14³⁰ Обед

13-е заседание Председатель – О.Д. Паращук

14³⁰ – 14⁴⁵ К.А. Окотруб¹, А.Н. Омельченко^{1,2}, Т.Н. Игонина³, Е.Ю. Брусенцев^{1,3}, С.Я. Амстиславский^{1,3}, Н.В. Суровцев¹. Исследование криоконсервации преимплантационных эмбрионов млекопитающих методом спектроскопии комбинационного рассеяния света с использованием дейтериованных меток.

¹ Институт автоматики и электрометрии СО РАН, Новосибирск, Россия;

² Новосибирский государственный университет, Новосибирск, Россия;

³ Институт цитологии и генетики СО РАН, Новосибирск, Россия.

$14^{45} - 15^{00}$ K. Rolle.

Light scattering for physical characterization of samples cryopreserved by quench cooling. *IA&E SB RAS, Novosibirsk, Russia.*

15⁰⁰ – 15¹⁵ **А.В. Лактионова**^{1,2}, В.А. Зыкова¹, Е.А. Добрынина^{1,2}.

Исследование упругих свойств гидрогелей на основе желатина методом спектроскопии рассеяния Мандельштама-Бриллюэна.

¹ Институт автоматики и электрометрии, Новосибирск, Россия;

² Новосибирский государственный университет, Новосибирск, Россия.

15¹⁵ – 15³⁰

<u>И.В. Пластинин</u>^{1,2}, Т.А. Доленко^{1,2}.

Спектроскопия комбинационного рассеяния нанореакторов в обратных микроэмульсиях.

¹ Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына МГУ, Москва, Россия;

² Физический факультет Московского государственного университета имени М.В. Ломоносова, Москва, Россия.

15³⁰ – 15⁴⁵ **Д.В. Петров**, И.И. Матросов.
Применение поляризационной спектроскопии КР для газоанализа.
Институт мониторинга климатических и экологических систем СО РАН, Томск, Россия.

15⁴⁵ – 16⁰⁰ **Е.П. Кожина** ^{1,2,3}, С.А. Бедин^{2,3,4}, А.В. Наумов^{2,3,5}.

Оценка эффективной усиливающей площади поверхности ГКР-подложек.

- ¹ Сколковский институт науки и технологий, Москва, Россия;
- ² Московский педагогический государственный университет, ИФТИС, Москва, Россия;
- ³ Физический институт им. П.Н. Лебедева РАН, Москва, Россия;
- ⁴ ФНИЦ «Кристаллографии и фотоники» РАН. Москва. Россия:
- ⁵ Институт спектроскопии РАН, Троицк, Россия.

16⁰⁰ – 16¹⁵ Кофе-брейк

14-е заседание Председатель - Е.Д. Образцова

С.А. Бедин 1,2,3, Е.П. Кожина^{2,4}, А.В. Наумов^{1,2}. ГКР-подложки с оптимизированными дендритными структурами на основе трековых мембран.

¹ Московский педагогический государственный университет, Москва, Россия;

² Физический институт им. П.Н. Лебедева, Москва, Россия;

³ ФНИЦ «Кристаллографии и фотоники» РАН, Москва, Россия;

⁴ Сколковский институт науки и

⁴ Сколковский институт науки и технологий, Москва, Россия.

16³⁰ – 16⁴⁵ Е.В. Соловьева, А. И. Деменьшин, В.О. Свинко, А.Н. Смирнов. Бимодальные ГКР-флуоресцентные метки для биовизуализации и лечебной гипертермии: оптимизация состава и структуры. Санкт-Петербургский государственный университет, Санкт-Петербург, Россия.

16⁴⁵ – 17⁰⁰ **Д.Л. Чешев**, Р.Д. Родригес, А.А. Аверкиев, Е.С. Шеремет. Роль фототермического нагрева в плазмонном фотокатализе. Томский политехнический университет, Томск, Россия.

Пятница, 9 июня 2023

Школа молодых ученых по актуальным проблемам спектроскопии комбинационного рассеяния света

15-е заседание Председатель – А.Г. Милёхин

- 9⁰⁰ 9³⁰ *Н.Н. Мельник*.
 - Эволюция приборов для комбинационного рассеяния света.
 Физический институт им. П.Н. Лебедева
 - РАН, Москва, Россия.
- $9^{30} 10^{00}$ **А.Н. Втюрин**.

Теория групп для анализа спектров КР. Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия; Сибирский федеральный университет, Красноярск, Россия.

10⁰⁰ – 10³⁰ **А.С. Крылов**.

Техника КР в экспериментах при высоком гидростатическом давлении. Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия.

- 10³⁰ 11⁰⁰ И.А. Ларкин¹, А.В. Вагов², В.И. Корепанов¹. Разделение колебательных линий, фона и шума в КР спектрах методом модифицированной регуляризации Тихонова.

 ¹ Институт проблем технологии микроэлектроники и особочистых материалов РАН, Черноголовка, Россия;

 ² Национальный исследовательский университет «Высшая школа экономики», Москва. Россия.
- 11⁰⁰ 11³⁰ Кофе-брейк

16-е заседание Председатель - А.Н. Втюрин

11³⁰ — 12⁰⁰ **А.Г. Милёхин**.

Гигантское КРС: от микро к нано-масштабам. Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия.

12⁰⁰ – 12³⁰ **Т.С. Шамирзаев**.

Фотолюминесценция- как метод изучения энергетической структуры твердого тела. Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия.

12³⁰ – 12⁴⁵ Перерыв

12⁴⁵ – 13¹⁵ Закрытие конференции

Стендовая секция - 1

Понедельник, 5 июня 2023 г.

- П1 В.В. Поборчий^{1,2}, А.В. Фокин¹, **А.А. Шкляев**^{3,4}. Оптические свойства экстремально тонких нанопроволок теллура, сформированных в каналах субнанометрового диаметра.

 ¹ Физико-технический институт им. А.Ф.Иоффе, Санкт-Петербург, Россия;

 ² Национальный институт передовых промышленных наук и технологий, Цукуба, Япония
 - ³ Новосибирский государственный университет, Новосибирск, Россия;
 - ⁴ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия.
- П2 Ж. Чжан 1,2, И.Е. Тысченко 1, В.А. Володин 1,2, В.П. Попов 1. Комбинационное рассеяние света в структурах кремний-на-изоляторе, имплантированных ионами In 1 и Sb 1 вблизи границы сращивания Si/SiO 2. 1 Институт физики полупроводников им. А.В. Ржанова, Новосибирск, Россия; 2 Новосибирский государственный университет, Новосибирск, Россия.
- ПЗ <u>Ч. Сы</u>^{1,2}, И.Е. Тысченко¹, С.Г. Черкова¹, В.А. Володин^{1,2}, В.П. Попов¹. Комбинационное рассеяние света и фотолюминесценция в пленках SiO₂, имплантированных ионами In⁺ и As⁺.

 ¹ Институт физики полупроводников им. А.В. Ржанова, Новосибирск, Россия;
 ² Новосибирский государственный университет, Новосибирск, Россия.
- П4 <u>Л.С. Басалаева</u>¹, В.П. Графова², Т.А. Дуда¹, Р.Б. Васильев², А.Г. Милёхин¹. Оптические фононы атомно-тонких нанопластинок

ZnSe.

¹Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия; ² Московский государственный университет им. М.В. Ломоносова, Москва, Россия.

П5 **Д.С. Косцов**¹, Н.Н. Мельник¹, В.В. Трегулов², Г.Н. Скопцова².

Проявление резонанса Фано в спектрах КРС пористых структур с p-n-переходом, полученных металл-стимулированным травлением.

- ¹ Физический институт им. П.Н. Лебедева РАН, Москва, Россия;
- ² Рязанский государственный университет им. С.А. Есенина, Рязань, Россия.
- П6 <u>А.А. Никифоров</u>, Д.В. Пелегов. Исследование изменения структуры Li₄Ti₅O₁₂ под действием лазерного излучения при измерении спектров КРС. Уральский федеральный университет, Екатеринбург, Россия.
- П7 <u>А.А. Никифоров</u>¹, А.С. Крылов², Д.В. Пелегов¹. Зависимости параметров спектров КРС отдельных частиц LTO от температуры и мощности лазерного воздействия.

 ¹ Уральский федеральный университет, Екатеринбург, Россия;

 ² Институт физики им. Л.В.Киренского СО РАН, Красноярск, Россия.
- П8 К.Н. Галкин, А.М. Маслов, И.М. Чернев, О.В. Кропачев, Е.Ю. Субботин, Д.Л. Горошко, Н.Г. Галкин. Комбинационное рассеяние света в квазидвумерных и нанокристаллических пленках моносилицидов Fe, Cr и Ca на кремнии и сапфире. Институт автоматики и процессов управления ДВО РАН, Владивосток, Россия.
- П9 <u>Д.Л. Горошко</u>¹, И.М. Гаврилин², А.А. Дронов², О.А. Горошко¹.

Исследование теплопереноса в пленках сплава кремний-германий на кремнии с использованием рассеяния Стокса и анти-Стокса.

¹ Институт автоматики и процессов управления Дальневосточного отделения РАН, Владивосток, Россия;

² Национальный исследовательский университет «МИЭТ», Москва, Зеленоград, Россия.

- П10 <u>И.В. Калачев</u>^{1,2}, И.А. Милёхин^{1,2}, Е.А. Емельянов¹, В.В. Преображенский¹, В.С. Тумашев¹, А.Г. Милёхин¹, А.В. Латышев^{1,2}. Спектроскопия комбинационного рассеяния света и фотолюминесценция нанопроволок GaAs. ¹ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия; ² Новосибирский государственный университет, Новосибирск, Россия.
- П11 А.А. Рябин¹, Н.В. Годяев¹, Д.В. Пелегов^{1,2}. Использование микро-КР спектроскопии и подхода отдельных частиц для исследования локальной оптической неоднородности LiCoO₂.

 ¹ Институт естественных наук и математики УрФУ, Екатеринбург, Россия;

 ² ЦК НТИ «Мобильные накопители энергии», Институт Электродвижения МФТИ Московская область, Долгопрудный, Россия.
- П12 **А.Я. Корец**¹, О.В. Семенова¹, Д.А. Балахнин¹, И.Э. Олин¹, А.С. Крылов². Комбинационное рассеяние света на пористом кремнии, полученном электрохимическим травлением с облучением в разных областях спектра.

¹Сибирский Федеральный университет, Красноярск, Россия;

² Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия.

- П13 А.А. Рябин , С.А. Мельников , В.Р. Сейсембаева , М.Г. Кособоков , Д.В. Пелегов , Сисследование рассеяния света от частиц железофосфата лития.

 1 Институт естественных наук и математики УрФУ, Екатеринбург, Россия;

 2 ЦК НТИ «Мобильные накопители энергии», Институт Электродвижения МФТИ Московская область, Долгопрудный, Россия.
- П14 Д.Л. Горошко, С.В. Чусовитина, О.А. Горошко. Изучение поверхностных электронных состояний в тонких пленках InSb, сформированных на монокристаллическом кремнии методом твердофазной эпитаксии.

 Институт автоматики и процессов управления ДВО РАН, Владивосток, Россия.
- П15 <u>**Е.П. Кожина**</u>^{1,2}, С.А. Бедин^{2,3}, С.С. Косолобов¹, В.П. Драчев¹. Эффект агломератов и воздействия ультразвука на поглощающие способности коллоидного раствора нанопроволок кобальта.

 1 Сколковский институт науки и технологий, Москва, Россия;
 2 Физический институт им. П.Н. Лебедева РАН,
 - Москва, Россия; ³ ФНИЦ «Кристаллографии и фотоники» РАН, Москва. Россия.
- П16 Т.С. Гришин^{1,2}, Л.С. Волкова^{1,2}, И.А. Михайлов¹, Е.В. Латипов¹, П.А. Едельбекова^{1,2}. Формирование и исследование свойств ГКР-подложек на основе массивов наночастиц, полученных путем низкотемпературного отжига тонких пленок серебра.
 - ¹ Институт нанотехнологий микроэлектроники РАН, Москва, Россия:
 - ² Национальный исследовательский университет «Московский институт электронной техники», Зеленоград, Россия.

- П17 <u>И.А. Михайлов</u> 1,2, Т.С. Гришин¹, Е.В. Латипов¹, П.А. Едельбекова¹, Л.С. Волкова¹. Исследование влияния изменения поверхности пленок Ад под воздействием окружающей среды на спектры комбинационного рассеяния света.

 1 Институт нанотехнологий микроэлектроники РАН, Москва, Россия;

 2 Национальный исследовательский университет «Московский институт электронной техники», Москва, Россия.
- П18 <u>Л.С. Волкова</u> ^{1,2}, Т.С. Гришин^{1,2}, И.А. Михайлов¹, Д.В. Новиков², Е.В. Латипов¹. Создание и исследование свойств подложек для спектроскопоии ГКР на основе наностолбиков ТіО_х, декорированных наночастицами металлов. ¹ Институт нанотехнологий микроэлектроники РАН, Москва, Россия; ² Национальный исследовательский университет «Московский институт электронной техники», Москва, Зеленоград, Россия.
- П19 <u>С.В. Дубков</u>², С.А. Завацкий¹, А.В. Бондаренко^{1,2}, А.А. Бурко¹, Д.В.Новиков², П.А. Едельбекова³, А.А. Беставашвили⁴. Разработка планарных ГКР-структур на основе массива серебряных наночастиц для детектирования биомаркеров сердечнососудистых болезней.

 1 Белорусский государственный университет информатики и радиоэлектроники, Минск,
 - Беларусь;
 ² Национальный исследовательский университет «МИЭТ», Зеленоград, Москва, Россия:
 - ³ Институт нанотехнологий микроэлектроники Российской академии наук, Москва, Россия; ⁴ Институт клинической медицины им. Н.В. Склифосовского Сеченовского университета, Москва, Россия.

- П20 М.Е. Высоких¹, Т.В. Михайлова², С.Ю. Краснобородько¹, В.Н. Бережанский², А.Н. Шапошников², М.Ф. Булатов¹, Д.В. Чуриков¹. Тонкие пленки феррит-гранатов для нанофотоники: структурный анализ.

 1 Научно-технологический центр уникального приборостроения РАН, Москва, Россия;
 2 Крымский федеральный университет им. В.И. Вернадского, Симферополь, Россия.
- П21 <u>А.В. Бондаренко</u>^{1,2}, С.А. Завацкий¹, А.А. Бурко¹, Д.Д. Лапутько¹, Д.В. Новиков², С.В. Дубков². Электродинамические свойства ГКР-активных частиц серебра, бимодально распределенных по размерам.
 - ¹ Белорусский государственный университет информатики и радиоэлектроники, Минск, Беларусь;
 - ² Национальный исследовательский университет «МИЭТ», Зеленоград, Россия.

Стендовая секция – 2

Вторник, 6 июня 2023 г.

В1 <u>П.А. Едельбекова</u>^{1,2}, Е.В. Латипов¹, Т.С. Гришин^{1,2}. Факторы, влияющие на коэффициент усиления серебряных SERS-подложек. ¹ Институт нанотехнологий микроэлектроники РАН, Москва, Россия; ² Национальный исследовательский университет «Московский институт электронной техники», Москва, Зеленоград, Россия.

- В2 <u>К.А. Гавриличева</u>, О.И. Баркалов. Исследование методом КРС спектроскопии феррита La_{0.5}Sr_{0.5}FeO_{3-γ}. Институт физики твердого тела им. Ю.А. Осипьяна РАН, Черноголовка, Россия.
- ВЗ <u>У.О. Бородина</u>¹, С.В. Горяйнов¹, С.Н. Крылова², А.С. Крылов², А.Н. Втюрин². Системы вайракит-вода и филлипсит-вода в условиях зоны холодной субдукции.

 ¹ Институт геологии и минералогии СО РАН, Новосибирск, Россия;

 ² Институт физики им. Л. В. Киренского СО РАН, Красноярск, Россия.
- В4 <u>Л.Я. Сушанек</u>¹, Ю.В. Щапова^{1,2}. Ангармонизм колебаний решетки магний-алюминиевой шпинели с неупорядоченным распределением катионов по позициям.

 ¹ Институт геологии и геохимии имени академика А.Н. Заварицкого УрО РАН, Екатеринбург, Россия;

 ² Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, Екатеринбург, Россия.
- в5 <u>М.В. Тареева</u>, М.А. Карпов, М.А. Шевченко,

С.Ф. Уманская, А.Д. Кудрявцева, Т.В. Миронова, Н.В. Чернега, А.Н. Маресев.

ВКР в жидкостях со случайной распределенной обратной связью.

Физический институт им. П.Н. Лебедева РАН, Москва, Россия.

В6 <u>М.С. Печурин</u>^{1,2}, Е.А. Панкрушина¹, С.Л. Вотяков¹, Е.В. Комлева³.

Терморамановская *in situ* спектроскопия природного фенакита Be_2SiO_4 и *ab initio* расчеты его фононного спектра.

¹ Институт геологии и геохимии УрО РАН, Екатеринбург, Россия;

² Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, Екатеринбург, Россия;

³ Институт физики металлов УрО РАН, Екатеринбург, Россия.

В7 <u>А.Ю. Кривоногова</u>^{1,2}, Н.Н. Курусь¹, И.А. Милёхин^{1,3}, А.А. Колосветов⁴, А.Г. Милёхин¹. Оптические свойства двумерных островков дисульфида вольфрама (WS₂).

¹ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия; ² Новосибирский государственный технический университет, Новосибирск, Россия;

³ Новосибирский государственный университет, Новосибирск, Россия;

⁴ Московский физико-технический институт, Долгопрудный, Россия.

В8 <u>А.В. Кацюба</u>¹, А.В. Двуреченский^{1,2}, Г.Н. Камаев¹, В.А. Володин^{1,2}, П.А. Кучинская¹. Исследование методом КРС структуры пленок CaSi₂ формируемых в условиях радиационного воздействия на структуру CaF₂\Si(111).

¹ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия;

² Новосибирский государственный университет, Новосибирск, Россия.

В9 **М.А. Аникина**^{1,2}, О.Ю. Коваль².

Особенности комбинационного рассеяния света метастабильной кристаллической фазы фосфида галлия GaP *P6*₃*mc*.

¹ Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алфёрова, Санкт-Петербург, Россия; ² Московский физико-технический институт (национальный исследовательский университет), Долгопрудный, Россия.

в10 *А.В. Савин*, Е.М. Рогинский.

Особенности в спектрах комбинационного рассеяния при структурном фазовом переходе в пентаоксиде ванадия интеркалированного литием. Физико-технический институт им. А.Ф. Иоффе, Санкт-Петербург, Россия.

В11 <u>Ю.В. Герасимова</u>^{1,2}, А.С. Крылов¹, А.Н. Втюрин^{1,2}, М.А. Герасимов¹, Н.М. Лапташ³, А.С. Александровский¹, А.А. Дубровский¹. Спектральные исследования кристаллов ABF₆·6H₂O.

¹ Институт физики им. Л. В. Киренского СО РАН, Красноярск, Россия;

² Сибирский федеральный университет Красноярск, Россия;

³ Институт химии ДВО РАН, Владивосток, Россия.

В12 $\underline{K.Ш. \ Pабаданов}^1$, М.М. Γ афуров 2 , М.А. Λ хмедов 1 , Д.И. Λ 2 Λ 3 Λ 4.

Колебательные спектры систем "электролитный раствор-наполнитель".

.1 Дагестанский государственный университет, Махачкала, Россия;

² Дагестанский федеральный исследовательский центр РАН, Махачкала, Россия.

В13 <u>К.А. Окотруб</u>¹, С.Г. Кондюрина², Ю.В. Зайцева¹, С.В. Адищев¹, Т.А. Рахманова^{1,3}, С.Я. Амстиславский^{1,3}.

Миллифлюидный чип для измерения КРС от биологических клеток в условиях меняющегося состава окружающей среды.

¹ Институт автоматики и электрометрии СО РАН, Новосибирск, Россия;

² Новосибирский государственный технический университет, Новосибирск, Россия;

³ Институт цитологии и генетики СО РАН, Новосибирск, Россия.

В14 Е.В. Переведенцева¹, А.В. Карменян², Ч.Л. Ченг², **Н.Н. Мельник**¹.

Применение спектроскопии комбинационного рассеяния света для анализа и мониторинга состояния биологических систем.

¹ Физический институт им. П.Н. Лебедева, Москва, Россия:

² National Dong Hwa University, Hualien, Taiwan.

В15 <u>**Е.В. Головкина**</u>¹, А.С. Крылов², С.Н. Крылова², А.Н. Втюрин^{1,2}.

Рамановская спектроскопия металлоорганических каркасов.

¹ Сибирский федеральный университет, Красноярск, Россия;

² Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия.

- В16 М.Я. Гришин¹, С.М. Першин¹, Е.В. Шашков¹, В.А. Орлович², А.И. Водчиц², И.А. Ходасевич². Новый пикосекундный ВКР-лазер на воде/жидком азоте с кратным снижением порога генерации.
 ¹ Институт общей физики им. А.М. Прохорова РАН, Москва, Россия;
 ² Институт физики им. Б.И. Степанова НАН Беларуси, Минск, Республика Беларусь.
- В17 В.А. Орлович¹, С.М. Першин², А.И. Водчиц¹, М.Я. Гришин², И.А. Ходасевич¹. Спектры прямого и обратного ВКР пикосекундных импульсов в воде вблизи поверхности.
 ¹Институт физики им. Б.И. Степанова

Национальной академии наук Беларуси, Минск, Республика Беларусь; ²Институт общей физики им. А.М. Прохорова Российской академии наук, Москва, Россия.

В18 **Н.А. Лунев**^{1,2}, А.О. Замчий¹, В.О. Константинов¹, И.Е. Меркулова¹, М.А. Морозова¹, В.А. Володин³, Е.А. Баранов¹.

Термический отжиг тонкопленочной структуры Au/Al₂O₃/a-Ge.

¹ Институт теплофизики им. С. С. Кутателадзе СО РАН, Новосибирск, Россия;

² Новосибирский государственный университет, Новосибирск, Россия;

³ Институт физики полупроводников им. А. В. Ржанова СО РАН, Новосибирск, Россия.

- В19 <u>Е.В Латипов</u>, Л.С. Волкова. Анализ Li-содержащих соединений на основе β-Са₃(PO₄)₂ методом КР спектроскопии. ФГБУН ИНМЭ РАН, Москва, Россия.
- В20 <u>К.А. Лаптинский</u>¹, С.А. Буриков^{1,2}, A.М. Вервальд², А.Д. Кудряшов², И.В. Пластинин¹, О.Э. Сарманова², Л.С. Утегенова², Т.А. Доленко^{1,2}. Применение методов машинного обучения для определения ионного состава водных сред по спектрам комбинационного рассеяния света. ¹ НИИ ядерной физики им. Д.В. Скобельцына, Москва, Россия; ² Физический факультет МГУ им. М.В. Ломоносова, Москва, Россия.
- В21 А.В. Иржак¹, Д.В. Иржак¹, К.С. Пундиков¹,
 А. Сергеев².
 Изменение спектров комбинационного рассеяния LiNbO₃ при приложении внешнего электрического поля.

¹ Институт проблем технологии микроэлектроники и особочистых материалов РАН, Черноголовка, Россия;

² Федеральный научный центр Научно-

исследовательский институт системных исследований РАН, Москва, Россия.

B22 **В.О. Свинко**, Е.В. Соловьева.

ГКР метки визуализации с ковалентно конъюгированным красителем: получение, тестирование и выявленные особенности. Институт Химии, Санкт-Петербургский государственный университет, Санкт-Петербург, Россия.

B23 **А.И. Деменьшин**, В.О. Свинко, А.Н. Смирнов, E.В. Соловьева.

ГКР исследование ацетиленовых соединений: выбор репортера для биометок на основе анизотропных наночастиц золота. Санкт-Петербургский государственный университет, Санкт-Петербург, Россия.